From f5c4671bfbad96bf346bd7e9a21fc4317b4959df Mon Sep 17 00:00:00 2001 From: Indrajith K L Date: Sat, 3 Dec 2022 17:00:20 +0530 Subject: Adds most of the tools --- v_windows/v/vlib/math/factorial.v | 55 +++++++++++++++++++++++++++++++++++++++ 1 file changed, 55 insertions(+) create mode 100644 v_windows/v/vlib/math/factorial.v (limited to 'v_windows/v/vlib/math/factorial.v') diff --git a/v_windows/v/vlib/math/factorial.v b/v_windows/v/vlib/math/factorial.v new file mode 100644 index 0000000..116e083 --- /dev/null +++ b/v_windows/v/vlib/math/factorial.v @@ -0,0 +1,55 @@ +module math + +// factorial calculates the factorial of the provided value. +pub fn factorial(n f64) f64 { + // For a large postive argument (n >= factorials_table.len) return max_f64 + if n >= factorials_table.len { + return max_f64 + } + // Otherwise return n!. + if n == f64(i64(n)) && n >= 0.0 { + return factorials_table[i64(n)] + } + return gamma(n + 1.0) +} + +// log_factorial calculates the log-factorial of the provided value. +pub fn log_factorial(n f64) f64 { + // For a large postive argument (n < 0) return max_f64 + if n < 0 { + return -max_f64 + } + // If n < N then return ln(n!). + if n != f64(i64(n)) { + return log_gamma(n + 1) + } else if n < log_factorials_table.len { + return log_factorials_table[i64(n)] + } + // Otherwise return asymptotic expansion of ln(n!). + return log_factorial_asymptotic_expansion(int(n)) +} + +fn log_factorial_asymptotic_expansion(n int) f64 { + m := 6 + mut term := []f64{} + xx := f64((n + 1) * (n + 1)) + mut xj := f64(n + 1) + log_factorial := log_sqrt_2pi - xj + (xj - 0.5) * log(xj) + mut i := 0 + for i = 0; i < m; i++ { + term << bernoulli[i] / xj + xj *= xx + } + mut sum := term[m - 1] + for i = m - 2; i >= 0; i-- { + if abs(sum) <= abs(term[i]) { + break + } + sum = term[i] + } + for i >= 0 { + sum += term[i] + i-- + } + return log_factorial + sum +} -- cgit v1.2.3