#include "main.h" #include "state.h" #include "rmath.h" #include "lua_core.h" #include "frustum.h" int imin( int a, int b ) { return a < b ? a : b; } int imax( int a, int b ) { return a > b ? a : b; } /* ## Math - Utils */ /* > result = RL.Round( float value ) Round float value - Success return int */ int lmathRound( lua_State* L ) { float value = luaL_checknumber( L, 1 ); lua_pushinteger( L, round( value ) ); return 1; } /* > result = RL.Sign( float value ) Sign of value - Success return int */ int lmathSign( lua_State* L ) { float value = luaL_checknumber( L, 1 ); lua_pushinteger( L, 0 <= value ? 1 : -1 ); return 1; } /* > result = RL.Clamp( float value, float min, float max ) Clamp float value - Success return float */ int lmathClamp( lua_State* L ) { float value = luaL_checknumber( L, 1 ); float min = luaL_checknumber( L, 2 ); float max = luaL_checknumber( L, 3 ); lua_pushnumber( L, Clamp( value, min, max ) ); return 1; } /* > result = RL.Lerp( float a, float b, float amount ) Calculate linear interpolation between two floats - Success return float */ int lmathLerp( lua_State* L ) { float start = luaL_checknumber( L, 1 ); float end = luaL_checknumber( L, 2 ); float amount = luaL_checknumber( L, 3 ); lua_pushnumber( L, Lerp( start, end, amount ) ); return 1; } /* > result = RL.Normalize( float value, float a, float b ) Normalize input value within input range - Success return float */ int lmathNormalize( lua_State* L ) { float value = luaL_checknumber( L, 1 ); float start = luaL_checknumber( L, 2 ); float end = luaL_checknumber( L, 3 ); lua_pushnumber( L, Normalize( value, start, end ) ); return 1; } /* > result = RL.Remap( float value, float inputStart, float inputEnd, float outputStart, float outputEnd ) Remap input value within input range to output range - Success return float */ int lmathRemap( lua_State* L ) { float value = luaL_checknumber( L, 1 ); float inputStart = luaL_checknumber( L, 2 ); float inputEnd = luaL_checknumber( L, 3 ); float outputStart = luaL_checknumber( L, 4 ); float outputEnd = luaL_checknumber( L, 5 ); lua_pushnumber( L, Remap( value, inputStart, inputEnd, outputStart, outputEnd ) ); return 1; } /* > result = RL.Wrap( float value, float min, float max ) Wrap input value from min to max - Success return float */ int lmathWrap( lua_State* L ) { float value = luaL_checknumber( L, 1 ); float min = luaL_checknumber( L, 2 ); float max = luaL_checknumber( L, 3 ); lua_pushnumber( L, Wrap( value, min, max ) ); return 1; } /* > result = RL.FloatEquals( float x, float y ) Check whether two given floats are almost equal - Success return bool */ int lmathFloatEquals( lua_State* L ) { float x = luaL_checknumber( L, 1 ); float y = luaL_checknumber( L, 2 ); lua_pushboolean( L, FloatEquals( x, y ) == 1 ); return 1; } /* ## Math - Vector2 */ /* > result = RL.Vector2Zero() Vector with components value 0.0f - Success return Vector2 */ int lmathVector2Zero( lua_State* L ) { uluaPushVector2( L, Vector2Zero() ); return 1; } /* > result = RL.Vector2One() Vector with components value 1.0f - Success return Vector2 */ int lmathVector2One( lua_State* L ) { uluaPushVector2( L, Vector2One() ); return 1; } /* > result = RL.Vector2Add( Vector2 v1, Vector2 v2 ) Add two vectors (v1 + v2) - Success return Vector2 */ int lmathVector2Add( lua_State* L ) { Vector2 v1 = uluaGetVector2( L, 1 ); Vector2 v2 = uluaGetVector2( L, 2 ); uluaPushVector2( L, Vector2Add( v1, v2 ) ); return 1; } /* > result = RL.Vector2AddValue( Vector2 v, float add ) Add vector and float value - Success return Vector2 */ int lmathVector2AddValue( lua_State* L ) { Vector2 v = uluaGetVector2( L, 1 ); float add = luaL_checknumber( L, 2 ); uluaPushVector2( L, Vector2AddValue( v, add ) ); return 1; } /* > result = RL.Vector2Subtract( Vector2 v1, Vector2 v2 ) Subtract two vectors (v1 - v2) - Success return Vector2 */ int lmathVector2Subtract( lua_State* L ) { Vector2 v1 = uluaGetVector2( L, 1 ); Vector2 v2 = uluaGetVector2( L, 2 ); uluaPushVector2( L, Vector2Subtract( v1, v2 ) ); return 1; } /* > result = RL.Vector2SubtractValue( Vector2 v, float sub ) Subtract vector by float value - Success return Vector2 */ int lmathVector2SubtractValue( lua_State* L ) { Vector2 v = uluaGetVector2( L, 1 ); float sub = luaL_checknumber( L, 2 ); uluaPushVector2( L, Vector2SubtractValue( v, sub ) ); return 1; } /* > result = RL.Vector2Length( vector2 v ) Calculate vector length - Success return float */ int lmathVector2Length( lua_State* L ) { Vector2 v = uluaGetVector2( L, 1 ); lua_pushnumber( L, Vector2Length( v ) ); return 1; } /* > result = RL.Vector2LengthSqr( vector2 v ) Calculate vector square length - Success return float */ int lmathVector2LengthSqr( lua_State* L ) { Vector2 v = uluaGetVector2( L, 1 ); lua_pushnumber( L, Vector2LengthSqr( v ) ); return 1; } /* > result = RL.Vector2DotProduct( Vector2 v1, Vector2 v2 ) Calculate two vectors dot product - Success return float */ int lmathVector2DotProduct( lua_State* L ) { Vector2 v1 = uluaGetVector2( L, 1 ); Vector2 v2 = uluaGetVector2( L, 2 ); lua_pushnumber( L, Vector2DotProduct( v1, v2 ) ); return 1; } /* > result = RL.Vector2Distance( Vector2 v1, Vector2 v2 ) Calculate distance between two vectors - Success return float */ int lmathVector2Distance( lua_State* L ) { Vector2 v1 = uluaGetVector2( L, 1 ); Vector2 v2 = uluaGetVector2( L, 2 ); lua_pushnumber( L, Vector2Distance( v1, v2 ) ); return 1; } /* > result = RL.Vector2DistanceSqr( Vector2 v1, Vector2 v2 ) Calculate square distance between two vectors - Success return float */ int lmathVector2DistanceSqr( lua_State* L ) { Vector2 v1 = uluaGetVector2( L, 1 ); Vector2 v2 = uluaGetVector2( L, 2 ); lua_pushnumber( L, Vector2DistanceSqr( v1, v2 ) ); return 1; } /* > result = RL.Vector2Angle( Vector2 v1, Vector2 v2 ) Calculate angle between two vectors NOTE: Angle is calculated from origin point (0, 0) - Success return float */ int lmathVector2Angle( lua_State* L ) { Vector2 v1 = uluaGetVector2( L, 1 ); Vector2 v2 = uluaGetVector2( L, 2 ); lua_pushnumber( L, Vector2Angle( v1, v2 ) ); return 1; } /* > result = RL.Vector2LineAngle( Vector2 a, Vector2 b ) Calculate angle defined by a two vectors line NOTE: Parameters need to be normalized Current implementation should be aligned with glm::angle - Success return float */ int lmathVector2LineAngle( lua_State* L ) { Vector2 start = uluaGetVector2( L, 1 ); Vector2 end = uluaGetVector2( L, 2 ); lua_pushnumber( L, Vector2LineAngle( start, end ) ); return 1; } /* > result = RL.Vector2Scale( Vector2 v, float scale ) Scale vector (multiply by value) - Success return Vector2 */ int lmathVector2Scale( lua_State* L ) { Vector2 v = uluaGetVector2( L, 1 ); float scale = luaL_checknumber( L, 2 ); uluaPushVector2( L, Vector2Scale( v, scale ) ); return 1; } /* > result = RL.Vector2Multiply( Vector2 v1, Vector2 v2 ) Multiply vector by vector - Success return Vector2 */ int lmathVector2Multiply( lua_State* L ) { Vector2 v1 = uluaGetVector2( L, 1 ); Vector2 v2 = uluaGetVector2( L, 2 ); uluaPushVector2( L, Vector2Multiply( v1, v2 ) ); return 1; } /* > result = RL.Vector2Negate( Vector2 v ) Negate vector - Success return Vector2 */ int lmathVector2Negate( lua_State* L ) { Vector2 v = uluaGetVector2( L, 1 ); uluaPushVector2( L, Vector2Negate( v ) ); return 1; } /* > result = RL.Vector2Divide( Vector2 v1, Vector2 v2 ) Divide vector by vector - Success return Vector2 */ int lmathVector2Divide( lua_State* L ) { Vector2 v1 = uluaGetVector2( L, 1 ); Vector2 v2 = uluaGetVector2( L, 2 ); uluaPushVector2( L, Vector2Divide( v1, v2 ) ); return 1; } /* > result = RL.Vector2Normalize( Vector2 v ) Normalize provided vector - Success return Vector2 */ int lmathVector2Normalize( lua_State* L ) { Vector2 v = uluaGetVector2( L, 1 ); uluaPushVector2( L, Vector2Normalize( v ) ); return 1; } /* > result = RL.Vector2Transform( Vector2 v, Matrix mat ) Transforms a Vector2 by a given Matrix - Success return Vector2 */ int lmathVector2Transform( lua_State* L ) { Vector2 v = uluaGetVector2( L, 1 ); Matrix mat = uluaGetMatrix( L, 2 ); uluaPushVector2( L, Vector2Transform( v, mat ) ); return 1; } /* > result = RL.Vector2Lerp( Vector2 v1, Vector2 v2, float amount ) Calculate linear interpolation between two vectors - Success return Vector2 */ int lmathVector2Lerp( lua_State* L ) { Vector2 v1 = uluaGetVector2( L, 1 ); Vector2 v2 = uluaGetVector2( L, 2 ); float amount = luaL_checknumber( L, 3 ); uluaPushVector2( L, Vector2Lerp( v1, v2, amount ) ); return 1; } /* > result = RL.Vector2Reflect( Vector2 v, Vector2 normal ) Calculate reflected vector to normal - Success return Vector2 */ int lmathVector2Reflect( lua_State* L ) { Vector2 v1 = uluaGetVector2( L, 1 ); Vector2 v2 = uluaGetVector2( L, 2 ); uluaPushVector2( L, Vector2Reflect( v1, v2 ) ); return 1; } /* > result = RL.Vector2Min( Vector2 v1, Vector2 v2 ) Get min value for each pair of components - Success return Vector2 */ int lmathVector2Min( lua_State* L ) { Vector2 v1 = uluaGetVector2( L, 1 ); Vector2 v2 = uluaGetVector2( L, 2 ); uluaPushVector2( L, Vector2Min( v1, v2 ) ); return 1; } /* > result = RL.Vector2Max( Vector2 v1, Vector2 v2 ) Get max value for each pair of components - Success return Vector2 */ int lmathVector2Max( lua_State* L ) { Vector2 v1 = uluaGetVector2( L, 1 ); Vector2 v2 = uluaGetVector2( L, 2 ); uluaPushVector2( L, Vector2Max( v1, v2 ) ); return 1; } /* > result = RL.Vector2Rotate( Vector2 v, float angle ) Rotate vector by angle - Success return Vector2 */ int lmathVector2Rotate( lua_State* L ) { Vector2 v = uluaGetVector2( L, 1 ); float degs = luaL_checknumber( L, 2 ); uluaPushVector2( L, Vector2Rotate( v, degs ) ); return 1; } /* > result = RL.Vector2MoveTowards( Vector2 v, Vector2 target, float maxDistance ) Move Vector towards target - Success return Vector2 */ int lmathVector2MoveTowards( lua_State* L ) { Vector2 v1 = uluaGetVector2( L, 1 ); Vector2 v2 = uluaGetVector2( L, 2 ); float maxDistance = luaL_checknumber( L, 3 ); uluaPushVector2( L, Vector2MoveTowards( v1, v2, maxDistance ) ); return 1; } /* > result = RL.Vector2Invert( Vector2 v ) Invert the given vector - Success return Vector2 */ int lmathVector2Invert( lua_State* L ) { Vector2 v = uluaGetVector2( L, 1 ); uluaPushVector2( L, Vector2Invert( v ) ); return 1; } /* > result = RL.Vector2Clamp( Vector2 v, Vector2 min, Vector2 max ) Clamp the components of the vector between min and max values specified by the given vectors - Success return Vector2 */ int lmathVector2Clamp( lua_State* L ) { Vector2 v = uluaGetVector2( L, 1 ); Vector2 min = uluaGetVector2( L, 2 ); Vector2 max = uluaGetVector2( L, 3 ); uluaPushVector2( L, Vector2Clamp( v, min, max ) ); return 1; } /* > result = RL.Vector2ClampValue( Vector2 v, float min, float max ) Clamp the magnitude of the vector between two min and max values - Success return Vector2 */ int lmathVector2ClampValue( lua_State* L ) { Vector2 v = uluaGetVector2( L, 1 ); float min = luaL_checknumber( L, 2 ); float max = luaL_checknumber( L, 3 ); uluaPushVector2( L, Vector2ClampValue( v, min, max ) ); return 1; } /* > result = RL.Vector2Equals( Vector2 v1, Vector2 v2 ) Check whether two given vectors are almost equal - Success return bool */ int lmathVector2Equals( lua_State* L ) { Vector2 v1 = uluaGetVector2( L, 1 ); Vector2 v2 = uluaGetVector2( L, 2 ); lua_pushboolean( L, Vector2Equals( v1, v2 ) == 1 ); return 1; } /* > result = RL.Vector2Refract( Vector2 v, Vector2 n, float r ) Compute the direction of a refracted ray v: normalized direction of the incoming ray n: normalized normal vector of the interface of two optical media r: ratio of the refractive index of the medium from where the ray comes to the refractive index of the medium on the other side of the surface - Success return Vector2 */ int lmathVector2Refract( lua_State* L ) { Vector2 v = uluaGetVector2( L, 1 ); Vector2 n = uluaGetVector2( L, 2 ); float r = luaL_checknumber( L, 3 ); uluaPushVector2( L, Vector2Refract( v, n, r ) ); return 1; } /* ## Math - Vector 3 */ /* > result = RL.Vector3Zero() Vector with components value 0.0f - Success return Vector3 */ int lmathVector3Zero( lua_State* L ) { uluaPushVector3( L, Vector3Zero() ); return 1; } /* > result = RL.Vector3One() Vector with components value 1.0f - Success return Vector3 */ int lmathVector3One( lua_State* L ) { uluaPushVector3( L, Vector3One() ); return 1; } /* > result = RL.Vector3Add( Vector3 v1, Vector3 v2 ) Add two vectors - Success return Vector3 */ int lmathVector3Add( lua_State* L ) { Vector3 v1 = uluaGetVector3( L, 1 ); Vector3 v2 = uluaGetVector3( L, 2 ); uluaPushVector3( L, Vector3Add( v1, v2 ) ); return 1; } /* > result = RL.Vector3AddValue( Vector3 v, float add ) Add vector and float value - Success return Vector3 */ int lmathVector3AddValue( lua_State* L ) { Vector3 v = uluaGetVector3( L, 1 ); float add = luaL_checknumber( L, 2 ); uluaPushVector3( L, Vector3AddValue( v, add ) ); return 1; } /* > result = RL.Vector3Subtract( Vector3 v1, Vector3 v2 ) Subtract two vectors - Success return Vector3 */ int lmathVector3Subtract( lua_State* L ) { Vector3 v1 = uluaGetVector3( L, 1 ); Vector3 v2 = uluaGetVector3( L, 2 ); uluaPushVector3( L, Vector3Subtract( v1, v2 ) ); return 1; } /* > result = RL.Vector3SubtractValue( Vector3 v, float sub ) Subtract vector by float value - Success return Vector3 */ int lmathVector3SubtractValue( lua_State* L ) { Vector3 v = uluaGetVector3( L, 1 ); float sub = luaL_checknumber( L, 2 ); uluaPushVector3( L, Vector3SubtractValue( v, sub ) ); return 1; } /* > result = RL.Vector3Scale( Vector3 v, float scalar ) Multiply vector by scalar - Success return Vector3 */ int lmathVector3Scale( lua_State* L ) { Vector3 v = uluaGetVector3( L, 1 ); float scalar = luaL_checknumber( L, 2 ); uluaPushVector3( L, Vector3Scale( v, scalar ) ); return 1; } /* > result = RL.Vector3Multiply( Vector3 v1, Vector3 v2 ) Multiply vector by vector - Success return Vector3 */ int lmathVector3Multiply( lua_State* L ) { Vector3 v1 = uluaGetVector3( L, 1 ); Vector3 v2 = uluaGetVector3( L, 2 ); uluaPushVector3( L, Vector3Multiply( v1, v2 ) ); return 1; } /* > result = RL.Vector3CrossProduct( Vector3 v1, Vector3 v2 ) Calculate two vectors cross product - Success return Vector3 */ int lmathVector3CrossProduct( lua_State* L ) { Vector3 v1 = uluaGetVector3( L, 1 ); Vector3 v2 = uluaGetVector3( L, 2 ); uluaPushVector3( L, Vector3CrossProduct( v1, v2 ) ); return 1; } /* > result = RL.Vector3Perpendicular( Vector3 v ) Calculate one vector perpendicular vector - Success return Vector3 */ int lmathVector3Perpendicular( lua_State* L ) { Vector3 v = uluaGetVector3( L, 1 ); uluaPushVector3( L, Vector3Perpendicular( v ) ); return 1; } /* > result = RL.Vector3Length( Vector3 v ) Calculate vector length - Success return float */ int lmathVector3Length( lua_State* L ) { Vector3 v = uluaGetVector3( L, 1 ); lua_pushnumber( L, Vector3Length( v ) ); return 1; } /* > result = RL.Vector3LengthSqr( Vector3 v ) Calculate vector square length - Success return float */ int lmathVector3LengthSqr( lua_State* L ) { Vector3 v = uluaGetVector3( L, 1 ); lua_pushnumber( L, Vector3LengthSqr( v ) ); return 1; } /* > result = RL.Vector3DotProduct( Vector3 v1, Vector3 v2 ) Calculate two vectors dot product - Success return float */ int lmathVector3DotProduct( lua_State* L ) { Vector3 v1 = uluaGetVector3( L, 1 ); Vector3 v2 = uluaGetVector3( L, 2 ); lua_pushnumber( L, Vector3DotProduct( v1, v2 ) ); return 1; } /* > result = RL.Vector3Distance( Vector3 v1, Vector3 v2 ) Calculate distance between two vectors - Success return float */ int lmathVector3Distance( lua_State* L ) { Vector3 v1 = uluaGetVector3( L, 1 ); Vector3 v2 = uluaGetVector3( L, 2 ); lua_pushnumber( L, Vector3Distance( v1, v2 ) ); return 1; } /* > result = RL.Vector3DistanceSqr( Vector3 v1, Vector3 v2 ) Calculate square distance between two vectors - Success return float */ int lmathVector3DistanceSqr( lua_State* L ) { Vector3 v1 = uluaGetVector3( L, 1 ); Vector3 v2 = uluaGetVector3( L, 2 ); lua_pushnumber( L, Vector3DistanceSqr( v1, v2 ) ); return 1; } /* > result = RL.Vector3Angle( Vector3 v1, Vector3 v2 ) Calculate angle between two vectors - Success return float */ int lmathVector3Angle( lua_State* L ) { Vector3 v1 = uluaGetVector3( L, 1 ); Vector3 v2 = uluaGetVector3( L, 2 ); lua_pushnumber( L, Vector3Angle( v1, v2 ) ); return 1; } /* > result = RL.Vector3Negate( Vector3 v ) Negate provided vector (invert direction) - Success return Vector3 */ int lmathVector3Negate( lua_State* L ) { Vector3 v = uluaGetVector3( L, 1 ); uluaPushVector3( L, Vector3Negate( v ) ); return 1; } /* > result = RL.Vector3Divide( Vector3 v1, Vector3 v2 ) Divide vector by vector - Success return Vector3 */ int lmathVector3Divide( lua_State* L ) { Vector3 v1 = uluaGetVector3( L, 1 ); Vector3 v2 = uluaGetVector3( L, 2 ); uluaPushVector3( L, Vector3Divide( v1, v2 ) ); return 1; } /* > result = RL.Vector3Normalize( Vector3 v ) Normalize provided vector - Success return Vector3 */ int lmathVector3Normalize( lua_State* L ) { Vector3 v = uluaGetVector3( L, 1 ); uluaPushVector3( L, Vector3Normalize( v ) ); return 1; } /* > result = RL.Vector3Project( Vector3 v1, Vector3 v2 ) Calculate the projection of the vector v1 on to v2 - Success return Vector3 */ int lmathVector3Project( lua_State* L ) { Vector3 v1 = uluaGetVector3( L, 1 ); Vector3 v2 = uluaGetVector3( L, 2 ); uluaPushVector3( L, Vector3Project( v1, v2 ) ); return 1; } /* > result = RL.Vector3Reject( Vector3 v1, Vector3 v2 ) Calculate the rejection of the vector v1 on to v2 - Success return Vector3 */ int lmathVector3Reject( lua_State* L ) { Vector3 v1 = uluaGetVector3( L, 1 ); Vector3 v2 = uluaGetVector3( L, 2 ); uluaPushVector3( L, Vector3Reject( v1, v2 ) ); return 1; } /* > v1, v2 = RL.Vector3OrthoNormalize( Vector3 v1, Vector3 v2 ) Orthonormalize provided vectors. Makes vectors normalized and orthogonal to each other. Gram-Schmidt function implementation - Success return Vector3, Vector3 */ int lmathVector3OrthoNormalize( lua_State* L ) { Vector3 v1 = uluaGetVector3( L, 1 ); Vector3 v2 = uluaGetVector3( L, 2 ); Vector3OrthoNormalize( &v1, &v2 ); uluaPushVector3( L, v1 ); uluaPushVector3( L, v2 ); return 2; } /* > result = RL.Vector3Transform( Vector3 v, Matrix mat ) Transforms a Vector3 by a given Matrix - Success return Vector3 */ int lmathVector3Transform( lua_State* L ) { Vector3 v = uluaGetVector3( L, 1 ); Matrix mat = uluaGetMatrix( L, 2 ); uluaPushVector3( L, Vector3Transform( v, mat ) ); return 1; } /* > result = RL.Vector3RotateByQuaternion( Vector3 v, Quaternion q ) Transform a vector by quaternion rotation - Success return Vector3 */ int lmathVector3RotateByQuaternion( lua_State* L ) { Vector3 v = uluaGetVector3( L, 1 ); Quaternion q = uluaGetQuaternion( L, 2 ); uluaPushVector3( L, Vector3RotateByQuaternion( v, q ) ); return 1; } /* > result = RL.Vector3RotateByAxisAngle( Vector3 v, Vector3 axis, float angle ) Rotates a vector around an axis - Success return Vector3 */ int lmathVector3RotateByAxisAngle( lua_State* L ) { Vector3 v = uluaGetVector3( L, 1 ); Vector3 axis = uluaGetVector3( L, 2 ); float angle = luaL_checknumber( L, 3 ); uluaPushVector3( L, Vector3RotateByAxisAngle( v, axis, angle ) ); return 1; } /* > result = RL.Vector3MoveTowards( Vector3 v, Vector3 target, float maxDistance ) Move Vector towards target - Success return Vector3 */ int lmathVector3MoveTowards( lua_State* L ) { Vector3 v = uluaGetVector3( L, 1 ); Vector3 target = uluaGetVector3( L, 2 ); float maxDistance = luaL_checknumber( L, 3 ); uluaPushVector3( L, Vector3MoveTowards( v, target, maxDistance ) ); return 1; } /* > result = RL.Vector3Lerp( Vector3 v1, Vector3 v2, float amount ) Calculate linear interpolation between two vectors - Success return Vector3 */ int lmathVector3Lerp( lua_State* L ) { Vector3 v1 = uluaGetVector3( L, 1 ); Vector3 v2 = uluaGetVector3( L, 2 ); float amount = luaL_checknumber( L, 3 ); uluaPushVector3( L, Vector3Lerp( v1, v2, amount ) ); return 1; } /* > result = RL.Vector3CubicHermite( Vector3 v1, Vector3 tangent1, Vector3 v2, Vector3 tangent2, float amount ) Calculate cubic hermite interpolation between two vectors and their tangents as described in the GLTF 2.0 specification: https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html#interpolation-cubic - Success return Vector3 */ int lmathVector3CubicHermite( lua_State* L ) { Vector3 v1 = uluaGetVector3( L, 1 ); Vector3 tangent1 = uluaGetVector3( L, 2 ); Vector3 v2 = uluaGetVector3( L, 3 ); Vector3 tangent2 = uluaGetVector3( L, 4 ); float amount = luaL_checknumber( L, 5 ); uluaPushVector3( L, Vector3CubicHermite( v1, tangent1, v2, tangent2, amount ) ); return 1; } /* > result = RL.Vector3Reflect( Vector3 v, Vector3 normal ) Calculate reflected vector to normal - Success return Vector3 */ int lmathVector3Reflect( lua_State* L ) { Vector3 v = uluaGetVector3( L, 1 ); Vector3 normal = uluaGetVector3( L, 2 ); uluaPushVector3( L, Vector3Reflect( v, normal ) ); return 1; } /* > result = RL.Vector3Min( Vector3 v1, Vector3 v2 ) Get min value for each pair of components - Success return Vector3 */ int lmathVector3Min( lua_State* L ) { Vector3 v1 = uluaGetVector3( L, 1 ); Vector3 v2 = uluaGetVector3( L, 2 ); uluaPushVector3( L, Vector3Min( v1, v2 ) ); return 1; } /* > result = RL.Vector3Max( Vector3 v1, Vector3 v2 ) Get max value for each pair of components - Success return Vector3 */ int lmathVector3Max( lua_State* L ) { Vector3 v1 = uluaGetVector3( L, 1 ); Vector3 v2 = uluaGetVector3( L, 2 ); uluaPushVector3( L, Vector3Max( v1, v2 ) ); return 1; } /* > result = RL.Vector3Barycenter( Vector3 p, Vector3 a, Vector3 b, Vector3 c ) Compute barycenter coordinates (u, v, w) for point p with respect to triangle (a, b, c) NOTE: Assumes P is on the plane of the triangle - Success return Vector3 */ int lmathVector3Barycenter( lua_State* L ) { Vector3 p = uluaGetVector3( L, 1 ); Vector3 a = uluaGetVector3( L, 2 ); Vector3 b = uluaGetVector3( L, 3 ); Vector3 c = uluaGetVector3( L, 4 ); uluaPushVector3( L, Vector3Barycenter( p, a, b, c ) ); return 1; } /* > result = RL.Vector3Unproject( Vector3 source, Matrix projection, Matrix view ) Projects a Vector3 from screen space into object space NOTE: We are avoiding calling other raymath functions despite available - Success return Vector3 */ int lmathVector3Unproject( lua_State* L ) { Vector3 source = uluaGetVector3( L, 1 ); Matrix projection = uluaGetMatrix( L, 2 ); Matrix view = uluaGetMatrix( L, 3 ); uluaPushVector3( L, Vector3Unproject( source, projection, view ) ); return 1; } /* > result = RL.Vector3Invert( Vector3 v ) Invert the given vector - Success return Vector3 */ int lmathVector3Invert( lua_State* L ) { Vector3 v = uluaGetVector3( L, 1 ); uluaPushVector3( L, Vector3Invert( v ) ); return 1; } /* > result = RL.Vector3Clamp( Vector3 v, Vector3 min, Vector3 max ) Clamp the components of the vector between min and max values specified by the given vectors - Success return Vector3 */ int lmathVector3Clamp( lua_State* L ) { Vector3 v = uluaGetVector3( L, 1 ); Vector3 min = uluaGetVector3( L, 2 ); Vector3 max = uluaGetVector3( L, 3 ); uluaPushVector3( L, Vector3Clamp( v, min, max ) ); return 1; } /* > result = RL.Vector3ClampValue( Vector3 v, float min, float max ) Clamp the magnitude of the vector between two values - Success return Vector3 */ int lmathVector3ClampValue( lua_State* L ) { Vector3 v = uluaGetVector3( L, 1 ); float min = luaL_checknumber( L, 2 ); float max = luaL_checknumber( L, 3 ); uluaPushVector3( L, Vector3ClampValue( v, min, max ) ); return 1; } /* > result = RL.Vector3Equals( Vector3 v1, Vector3 v2 ) Check whether two given vectors are almost equal - Success return bool */ int lmathVector3Equals( lua_State* L ) { Vector3 v1 = uluaGetVector3( L, 1 ); Vector3 v2 = uluaGetVector3( L, 2 ); lua_pushboolean( L, Vector3Equals( v1, v2 ) == 1 ); return 1; } /* > result = RL.Vector3Refract( Vector3 v, Vector3 n, float r ) Compute the direction of a refracted ray where v specifies the normalized direction of the incoming ray, n specifies the normalized normal vector of the interface of two optical media, and r specifies the ratio of the refractive index of the medium from where the ray comes to the refractive index of the medium on the other side of the surface - Success return Vector3 */ int lmathVector3Refract( lua_State* L ) { Vector3 v = uluaGetVector3( L, 1 ); Vector3 n = uluaGetVector3( L, 2 ); float r = luaL_checknumber( L, 3 ); uluaPushVector3( L, Vector3Refract( v, n, r ) ); return 1; } /* ## Math - Vector4 */ /* > result = RL.Vector4Zero() Vector with components value 0.0f - Success return Vector4 */ int lmathVector4Zero( lua_State* L ) { uluaPushVector4( L, Vector4Zero() ); return 1; } /* > result = RL.Vector4One() Vector with components value 1.0f - Success return Vector4 */ int lmathVector4One( lua_State* L ) { uluaPushVector4( L, Vector4One() ); return 1; } /* > result = RL.Vector4Add( Vector4 v1, Vector4 v2 ) Add two vectors - Success return Vector4 */ int lmathVector4Add( lua_State* L ) { Vector4 v1 = uluaGetVector4( L, 1 ); Vector4 v2 = uluaGetVector4( L, 2 ); uluaPushVector4( L, Vector4Add( v1, v2 ) ); return 1; } /* > result = RL.Vector4AddValue( Vector4 v, float add ) Add vector and float value - Success return Vector4 */ int lmathVector4AddValue( lua_State* L ) { Vector4 v = uluaGetVector4( L, 1 ); float add = luaL_checknumber( L, 2 ); uluaPushVector4( L, Vector4AddValue( v, add ) ); return 1; } /* > result = RL.Vector4Subtract( Vector4 v1, Vector4 v2 ) Subtract two vectors - Success return Vector4 */ int lmathVector4Subtract( lua_State* L ) { Vector4 v1 = uluaGetVector4( L, 1 ); Vector4 v2 = uluaGetVector4( L, 2 ); uluaPushVector4( L, Vector4Subtract( v1, v2 ) ); return 1; } /* > result = RL.Vector4SubtractValue( Vector4 v, float sub ) Subtract vector by float value - Success return Vector4 */ int lmathVector4SubtractValue( lua_State* L ) { Vector4 v = uluaGetVector4( L, 1 ); float sub = luaL_checknumber( L, 2 ); uluaPushVector4( L, Vector4SubtractValue( v, sub ) ); return 1; } /* > result = RL.Vector4Length( Vector4 v ) Calculate vector length - Success return float */ int lmathVector4Length( lua_State* L ) { Vector4 v = uluaGetVector4( L, 1 ); lua_pushnumber( L, Vector4Length( v ) ); return 1; } /* > result = RL.Vector4LengthSqr( Vector4 v ) Calculate vector square length - Success return float */ int lmathVector4LengthSqr( lua_State* L ) { Vector4 v = uluaGetVector4( L, 1 ); lua_pushnumber( L, Vector4LengthSqr( v ) ); return 1; } /* > result = RL.Vector4DotProduct( Vector4 v1, Vector4 v2 ) Calculate two vectors dot product - Success return float */ int lmathVector4DotProduct( lua_State* L ) { Vector4 v1 = uluaGetVector4( L, 1 ); Vector4 v2 = uluaGetVector4( L, 2 ); lua_pushnumber( L, Vector4DotProduct( v1, v2 ) ); return 1; } /* > result = RL.Vector4Distance( Vector4 v1, Vector4 v2 ) Calculate distance between two vectors - Success return float */ int lmathVector4Distance( lua_State* L ) { Vector4 v1 = uluaGetVector4( L, 1 ); Vector4 v2 = uluaGetVector4( L, 2 ); lua_pushnumber( L, Vector4Distance( v1, v2 ) ); return 1; } /* > result = RL.Vector4DistanceSqr( Vector4 v1, Vector4 v2 ) Calculate square distance between two vectors - Success return float */ int lmathVector4DistanceSqr( lua_State* L ) { Vector4 v1 = uluaGetVector4( L, 1 ); Vector4 v2 = uluaGetVector4( L, 2 ); lua_pushnumber( L, Vector4DistanceSqr( v1, v2 ) ); return 1; } /* > result = RL.Vector4Scale( Vector4 v, float scalar ) Multiply vector by scalar - Success return Vector4 */ int lmathVector4Scale( lua_State* L ) { Vector4 v = uluaGetVector4( L, 1 ); float scalar = luaL_checknumber( L, 2 ); uluaPushVector4( L, Vector4Scale( v, scalar ) ); return 1; } /* > result = RL.Vector4Multiply( Vector4 v1, Vector4 v2 ) Multiply vector by vector - Success return Vector4 */ int lmathVector4Multiply( lua_State* L ) { Vector4 v1 = uluaGetVector4( L, 1 ); Vector4 v2 = uluaGetVector4( L, 2 ); uluaPushVector4( L, Vector4Multiply( v1, v2 ) ); return 1; } /* > result = RL.Vector4Negate( Vector4 v ) Negate provided vector (invert direction) - Success return Vector4 */ int lmathVector4Negate( lua_State* L ) { Vector4 v = uluaGetVector4( L, 1 ); uluaPushVector4( L, Vector4Negate( v ) ); return 1; } /* > result = RL.Vector4Divide( Vector4 v1, Vector4 v2 ) Divide vector by vector - Success return Vector4 */ int lmathVector4Divide( lua_State* L ) { Vector4 v1 = uluaGetVector4( L, 1 ); Vector4 v2 = uluaGetVector4( L, 2 ); uluaPushVector4( L, Vector4Divide( v1, v2 ) ); return 1; } /* > result = RL.Vector4Normalize( Vector4 v ) Normalize provided vector - Success return Vector4 */ int lmathVector4Normalize( lua_State* L ) { Vector4 v = uluaGetVector4( L, 1 ); uluaPushVector4( L, Vector4Normalize( v ) ); return 1; } /* > result = RL.Vector4Min( Vector4 v1, Vector4 v2 ) Get min value for each pair of components - Success return Vector4 */ int lmathVector4Min( lua_State* L ) { Vector4 v1 = uluaGetVector4( L, 1 ); Vector4 v2 = uluaGetVector4( L, 2 ); uluaPushVector4( L, Vector4Min( v1, v2 ) ); return 1; } /* > result = RL.Vector4Max( Vector4 v1, Vector4 v2 ) Get max value for each pair of components - Success return Vector4 */ int lmathVector4Max( lua_State* L ) { Vector4 v1 = uluaGetVector4( L, 1 ); Vector4 v2 = uluaGetVector4( L, 2 ); uluaPushVector4( L, Vector4Max( v1, v2 ) ); return 1; } /* > result = RL.Vector4Lerp( Vector4 v1, Vector4 v2, float amount ) Calculate linear interpolation between two vectors - Success return Vector4 */ int lmathVector4Lerp( lua_State* L ) { Vector4 v1 = uluaGetVector4( L, 1 ); Vector4 v2 = uluaGetVector4( L, 2 ); float amount = luaL_checknumber( L, 3 ); uluaPushVector4( L, Vector4Lerp( v1, v2, amount ) ); return 1; } /* > result = RL.Vector4MoveTowards( Vector4 v, Vector4 target, float maxDistance ) Move Vector towards target - Success return Vector4 */ int lmathVector4MoveTowards( lua_State* L ) { Vector4 v = uluaGetVector4( L, 1 ); Vector4 target = uluaGetVector4( L, 2 ); float maxDistance = luaL_checknumber( L, 3 ); uluaPushVector4( L, Vector4MoveTowards( v, target, maxDistance ) ); return 1; } /* > result = RL.Vector4Invert( Vector4 v ) Invert the given vector - Success return Vector4 */ int lmathVector4Invert( lua_State* L ) { Vector4 v = uluaGetVector4( L, 1 ); uluaPushVector4( L, Vector4Invert( v ) ); return 1; } /* > result = RL.Vector4Equals( Vector4 v1, Vector4 v2 ) Check whether two given vectors are almost equal - Success return bool */ int lmathVector4Equals( lua_State* L ) { Vector4 v1 = uluaGetVector4( L, 1 ); Vector4 v2 = uluaGetVector4( L, 2 ); lua_pushboolean( L, Vector4Equals( v1, v2 ) == 1 ); return 1; } /* ## Math - Matrix */ /* > result = RL.MatrixDeterminant( Matrix mat ) Compute matrix determinant - Success return float */ int lmathMatrixDeterminant( lua_State* L ) { Matrix mat = uluaGetMatrix( L, 1 ); lua_pushnumber( L, MatrixDeterminant( mat ) ); return 1; } /* > result = RL.MatrixTrace( Matrix mat ) Get the trace of the matrix (sum of the values along the diagonal) - Success return float */ int lmathMatrixTrace( lua_State* L ) { Matrix mat = uluaGetMatrix( L, 1 ); lua_pushnumber( L, MatrixTrace( mat ) ); return 1; } /* > result = RL.MatrixTranspose( Matrix mat ) Transposes provided matrix - Success return Matrix */ int lmathMatrixTranspose( lua_State* L ) { Matrix mat = uluaGetMatrix( L, 1 ); uluaPushMatrix( L, MatrixTranspose( mat ) ); return 1; } /* > result = RL.MatrixInvert( Matrix mat ) Invert provided matrix - Success return Matrix */ int lmathMatrixInvert( lua_State* L ) { Matrix mat = uluaGetMatrix( L, 1 ); uluaPushMatrix( L, MatrixInvert( mat ) ); return 1; } /* > result = RL.MatrixIdentity() Get identity matrix - Success return Matrix */ int lmathMatrixIdentity( lua_State* L ) { uluaPushMatrix( L, MatrixIdentity() ); return 1; } /* > result = RL.MatrixAdd( Matrix left, Matrix right ) Add two matrices - Success return Matrix */ int lmathMatrixAdd( lua_State* L ) { Matrix mat1 = uluaGetMatrix( L, 1 ); Matrix mat2 = uluaGetMatrix( L, 2 ); uluaPushMatrix( L, MatrixAdd( mat1, mat2 ) ); return 1; } /* > result = RL.MatrixSubtract( Matrix left, Matrix right ) Subtract two matrices (left - right) - Success return Matrix */ int lmathMatrixSubtract( lua_State* L ) { Matrix mat1 = uluaGetMatrix( L, 1 ); Matrix mat2 = uluaGetMatrix( L, 2 ); uluaPushMatrix( L, MatrixSubtract( mat1, mat2 ) ); return 1; } /* > result = RL.MatrixMultiply( Matrix left, Matrix right ) Get two matrix multiplication - Success return Matrix */ int lmathMatrixMultiply( lua_State* L ) { Matrix mat1 = uluaGetMatrix( L, 1 ); Matrix mat2 = uluaGetMatrix( L, 2 ); uluaPushMatrix( L, MatrixMultiply( mat1, mat2 ) ); return 1; } /* > result = RL.MatrixTranslate( Vector3 translate ) Get translation matrix - Success return Matrix */ int lmathMatrixTranslate( lua_State* L ) { Vector3 v = uluaGetVector3( L, 1 ); uluaPushMatrix( L, MatrixTranslate( v.x, v.y, v.z ) ); return 1; } /* > result = RL.MatrixRotate( Vector3 axis, float angle ) Create rotation matrix from axis and angle. NOTE: Angle should be provided in radians - Success return Matrix */ int lmathMatrixRotate( lua_State* L ) { Vector3 axis = uluaGetVector3( L, 1 ); float angle = luaL_checknumber( L, 2 ); uluaPushMatrix( L, MatrixRotate( axis, angle ) ); return 1; } /* > result = RL.MatrixRotateX( float angle ) Get x-rotation matrix (angle in radians) - Success return Matrix */ int lmathMatrixRotateX( lua_State* L ) { float angle = luaL_checknumber( L, 1 ); uluaPushMatrix( L, MatrixRotateX( angle ) ); return 1; } /* > result = RL.MatrixRotateY( float angle ) Get y-rotation matrix (angle in radians) - Success return Matrix */ int lmathMatrixRotateY( lua_State* L ) { float angle = luaL_checknumber( L, 1 ); uluaPushMatrix( L, MatrixRotateY( angle ) ); return 1; } /* > result = RL.MatrixRotateZ( float angle ) Get z-rotation matrix (angle in radians) - Success return Matrix */ int lmathMatrixRotateZ( lua_State* L ) { float angle = luaL_checknumber( L, 1 ); uluaPushMatrix( L, MatrixRotateZ( angle ) ); return 1; } /* > result = RL.MatrixRotateXYZ( Vector3 angles ) Get xyz-rotation matrix (angles in radians) - Success return Matrix */ int lmathMatrixRotateXYZ( lua_State* L ) { Vector3 angle = uluaGetVector3( L, 1 ); uluaPushMatrix( L, MatrixRotateXYZ( angle ) ); return 1; } /* > result = RL.MatrixRotateZYX( Vector3 angles ) Get zyx-rotation matrix (angles in radians) - Success return Matrix */ int lmathMatrixRotateZYX( lua_State* L ) { Vector3 angle = uluaGetVector3( L, 1 ); uluaPushMatrix( L, MatrixRotateZYX( angle ) ); return 1; } /* > result = RL.MatrixScale( Vector3 scale ) Get scaling matrix - Success return Matrix */ int lmathMatrixScale( lua_State* L ) { Vector3 v = uluaGetVector3( L, 1 ); uluaPushMatrix( L, MatrixScale( v.x, v.y, v.z ) ); return 1; } /* > result = RL.MatrixFrustum( double left, double right, double bottom, double top, double near, double far ) Get perspective projection matrix - Success return Matrix */ int lmathMatrixFrustum( lua_State* L ) { float left = luaL_checknumber( L, 1 ); float right = luaL_checknumber( L, 2); float bottom = luaL_checknumber( L, 3 ); float top = luaL_checknumber( L, 4 ); float near = luaL_checknumber( L, 5 ); float far = luaL_checknumber( L, 6 ); uluaPushMatrix( L, MatrixFrustum( left, right, bottom, top, near, far ) ); return 1; } /* > result = RL.MatrixPerspective( double fovy, double aspect, double near, double far ) Get perspective projection matrix - Success return Matrix */ int lmathMatrixPerspective( lua_State* L ) { float fovy = luaL_checknumber( L, 1 ); float aspect = luaL_checknumber( L, 2 ); float near = luaL_checknumber( L, 3 ); float far = luaL_checknumber( L, 4 ); uluaPushMatrix( L, MatrixPerspective( fovy, aspect, near, far ) ); return 1; } /* > result = RL.MatrixOrtho( double left, double right, double bottom, double top, double near, double far ) Get orthographic projection matrix - Success return Matrix */ int lmathMatrixOrtho( lua_State* L ) { float left = luaL_checknumber( L, 1 ); float right = luaL_checknumber( L, 2 ); float bottom = luaL_checknumber( L, 3 ); float top = luaL_checknumber( L, 4 ); float near = luaL_checknumber( L, 5 ); float far = luaL_checknumber( L, 6 ); uluaPushMatrix( L, MatrixOrtho( left, right, bottom, top, near, far ) ); return 1; } /* > result = RL.MatrixLookAt( Vector3 eye, Vector3 target, Vector3 up ) Get camera look-at matrix (View matrix) - Success return Matrix */ int lmathMatrixLookAt( lua_State* L ) { Vector3 eye = uluaGetVector3( L, 1 ); Vector3 target = uluaGetVector3( L, 2 ); Vector3 up = uluaGetVector3( L, 3 ); uluaPushMatrix( L, MatrixLookAt( eye, target, up ) ); return 1; } /* > translation, rotation, scale = RL.MatrixDecompose( Matrix mat ) Decompose a transformation matrix into its rotational, translational and scaling components - Success return Vector3, Quaternion, Vector3 */ int lmathMatrixDecompose( lua_State* L ) { Matrix mat = uluaGetMatrix( L, 1 ); Vector3 translation = { 0 }; Quaternion rotation = { 0 }; Vector3 scale = { 0 }; MatrixDecompose( mat, &translation, &rotation, &scale ); uluaPushVector3( L, translation ); uluaPushQuaternion( L, rotation ); uluaPushVector3( L, scale ); return 3; } /* ## Math - Quaternion */ /* > result = RL.QuaternionAdd( Quaternion q1, Quaternion q2 ) Add two quaternions - Success return Quaternion */ int lmathQuaternionAdd( lua_State* L ) { Quaternion q1 = uluaGetQuaternion( L, 1 ); Quaternion q2 = uluaGetQuaternion( L, 2 ); uluaPushQuaternion( L, QuaternionAdd( q1, q2 ) ); return 1; } /* > result = RL.QuaternionAddValue( Quaternion q, float add ) Add quaternion and float value - Success return Quaternion */ int lmathQuaternionAddValue( lua_State* L ) { Quaternion q = uluaGetQuaternion( L, 1 ); float add = luaL_checknumber( L, 2 ); uluaPushQuaternion( L, QuaternionAddValue( q, add ) ); return 1; } /* > result = RL.QuaternionSubtract( Quaternion q1, Quaternion q2 ) Subtract two quaternions - Success return Quaternion */ int lmathQuaternionSubtract( lua_State* L ) { Quaternion q1 = uluaGetQuaternion( L, 1 ); Quaternion q2 = uluaGetQuaternion( L, 2 ); uluaPushQuaternion( L, QuaternionSubtract( q1, q2 ) ); return 1; } /* > result = RL.QuaternionSubtractValue( Quaternion q, float sub ) Subtract quaternion and float value - Success return Quaternion */ int lmathQuaternionSubtractValue( lua_State* L ) { Quaternion q = uluaGetQuaternion( L, 1 ); float sub = luaL_checknumber( L, 2 ); uluaPushQuaternion( L, QuaternionSubtractValue( q, sub ) ); return 1; } /* > result = RL.QuaternionIdentity() Get identity quaternion - Success return Quaternion */ int lmathQuaternionIdentity( lua_State* L ) { uluaPushQuaternion( L, QuaternionIdentity() ); return 1; } /* > result = RL.QuaternionLength( Quaternion q ) Computes the length of a quaternion - Success return float */ int lmathQuaternionLength( lua_State* L ) { Quaternion q = uluaGetQuaternion( L, 1 ); lua_pushnumber( L, QuaternionLength( q ) ); return 1; } /* > result = RL.QuaternionNormalize( Quaternion q ) Normalize provided quaternion - Success return Quaternion */ int lmathQuaternionNormalize( lua_State* L ) { Quaternion q = uluaGetQuaternion( L, 1 ); uluaPushQuaternion( L, QuaternionNormalize( q ) ); return 1; } /* > result = RL.QuaternionInvert( Quaternion q ) Invert provided quaternion - Success return Quaternion */ int lmathQuaternionInvert( lua_State* L ) { Quaternion q = uluaGetQuaternion( L, 1 ); uluaPushQuaternion( L, QuaternionInvert( q ) ); return 1; } /* > result = RL.QuaternionMultiply( Quaternion q1, Quaternion q2 ) Calculate two quaternion multiplication - Success return Quaternion */ int lmathQuaternionMultiply( lua_State* L ) { Quaternion q1 = uluaGetQuaternion( L, 1 ); Quaternion q2 = uluaGetQuaternion( L, 2 ); uluaPushQuaternion( L, QuaternionMultiply( q1, q2 ) ); return 1; } /* > result = RL.QuaternionScale( Quaternion q, float mul ) Scale quaternion by float value - Success return Quaternion */ int lmathQuaternionScale( lua_State* L ) { Quaternion q = uluaGetQuaternion( L, 1 ); float mul = luaL_checknumber( L, 2 ); uluaPushQuaternion( L, QuaternionScale( q, mul ) ); return 1; } /* > result = RL.QuaternionDivide( Quaternion q1, Quaternion q2 ) Divide two quaternions - Success return Quaternion */ int lmathQuaternionDivide( lua_State* L ) { Quaternion q1 = uluaGetQuaternion( L, 1 ); Quaternion q2 = uluaGetQuaternion( L, 2 ); uluaPushQuaternion( L, QuaternionDivide( q1, q2 ) ); return 1; } /* > result = RL.QuaternionLerp( Quaternion q1, Quaternion q2, float amount ) Calculate linear interpolation between two quaternions - Success return Quaternion */ int lmathQuaternionLerp( lua_State* L ) { Quaternion q1 = uluaGetQuaternion( L, 1 ); Quaternion q2 = uluaGetQuaternion( L, 2 ); float amount = luaL_checknumber( L, 3 ); uluaPushQuaternion( L, QuaternionLerp( q1, q2, amount ) ); return 1; } /* > result = RL.QuaternionNlerp( Quaternion q1, Quaternion q2, float amount ) Calculate slerp-optimized interpolation between two quaternions - Success return Quaternion */ int lmathQuaternionNlerp( lua_State* L ) { Quaternion q1 = uluaGetQuaternion( L, 1 ); Quaternion q2 = uluaGetQuaternion( L, 2 ); float amount = luaL_checknumber( L, 3 ); uluaPushQuaternion( L, QuaternionNlerp( q1, q2, amount ) ); return 1; } /* > result = RL.QuaternionSlerp( Quaternion q1, Quaternion q2, float amount ) Calculates spherical linear interpolation between two quaternions - Success return Quaternion */ int lmathQuaternionSlerp( lua_State* L ) { Quaternion q1 = uluaGetQuaternion( L, 1 ); Quaternion q2 = uluaGetQuaternion( L, 2 ); float amount = luaL_checknumber( L, 3 ); uluaPushQuaternion( L, QuaternionSlerp( q1, q2, amount ) ); return 1; } /* > result = RL.QuaternionCubicHermiteSpline( Quaternion q1, Quaternion outTangent1, Quaternion q2, Quaternion inTangent2, float t ) Calculate quaternion cubic spline interpolation using Cubic Hermite Spline algorithm as described in the GLTF 2.0 specification: https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html#interpolation-cubic - Success return Quaternion */ int lmathQuaternionCubicHermiteSpline( lua_State* L ) { Quaternion q1 = uluaGetQuaternion( L, 1 ); Quaternion outTangent1 = uluaGetQuaternion( L, 2 ); Quaternion q2 = uluaGetQuaternion( L, 3 ); Quaternion inTangent2 = uluaGetQuaternion( L, 4 ); float t = luaL_checknumber( L, 5 ); uluaPushQuaternion( L, QuaternionCubicHermiteSpline( q1, outTangent1, q2, inTangent2, t ) ); return 1; } /* > result = RL.QuaternionFromVector3ToVector3( Vector3 from, Vector3 to ) Calculate quaternion based on the rotation from one vector to another - Success return Quaternion */ int lmathQuaternionFromVector3ToVector3( lua_State* L ) { Vector3 from = uluaGetVector3( L, 1 ); Vector3 to = uluaGetVector3( L, 2 ); uluaPushQuaternion( L, QuaternionFromVector3ToVector3( from, to ) ); return 1; } /* > result = RL.QuaternionFromMatrix( Matrix mat ) Get a quaternion for a given rotation matrix - Success return Quaternion */ int lmathQuaternionFromMatrix( lua_State* L ) { Matrix mat = uluaGetMatrix( L, 1 ); uluaPushQuaternion( L, QuaternionFromMatrix( mat ) ); return 1; } /* > result = RL.QuaternionToMatrix( Quaternion q ) Get a matrix for a given quaternion - Success return Matrix */ int lmathQuaternionToMatrix( lua_State* L ) { Quaternion q = uluaGetQuaternion( L, 1 ); uluaPushMatrix( L, QuaternionToMatrix( q ) ); return 1; } /* > result = RL.QuaternionFromAxisAngle( Vector3 axis, float angle ) Get rotation quaternion for an angle and axis NOTE: angle must be provided in radians - Success return Quaternion */ int lmathQuaternionFromAxisAngle( lua_State* L ) { Vector3 axis = uluaGetVector3( L, 1 ); float angle = luaL_checknumber( L, 2 ); uluaPushQuaternion( L, QuaternionFromAxisAngle( axis, angle ) ); return 1; } /* > axis, angle = RL.QuaternionToAxisAngle( Quaternion q ) Get the rotation angle and axis for a given quaternion - Success return Vector3, float */ int lmathQuaternionToAxisAngle( lua_State* L ) { Quaternion q = uluaGetQuaternion( L, 1 ); float angle = 0.0; Vector3 axis = { 0.0 }; QuaternionToAxisAngle( q, &axis, &angle ); uluaPushVector3( L, axis ); lua_pushnumber( L, angle ); return 2; } /* > result = RL.QuaternionFromEuler( float pitch, float yaw, float roll ) Get the quaternion equivalent to Euler angles NOTE: Rotation order is ZYX - Success return Quaternion */ int lmathQuaternionFromEuler( lua_State* L ) { float pitch = luaL_checknumber( L, 1 ); float yaw = luaL_checknumber( L, 2 ); float roll = luaL_checknumber( L, 3 ); uluaPushQuaternion( L, QuaternionFromEuler( pitch, yaw, roll ) ); return 1; } /* > result = RL.QuaternionToEuler( Quaternion q ) Get the Euler angles equivalent to quaternion (roll, pitch, yaw) NOTE: Angles are returned in a Vector3 struct in radians - Success return Vector3 */ int lmathQuaternionToEuler( lua_State* L ) { Quaternion q = uluaGetQuaternion( L, 1 ); uluaPushVector3( L, QuaternionToEuler( q ) ); return 1; } /* > result = RL.QuaternionTransform( Quaternion q, Matrix mat ) Transform a quaternion given a transformation matrix - Success return Quaternion */ int lmathQuaternionTransform( lua_State* L ) { Quaternion q = uluaGetQuaternion( L, 1 ); Matrix mat = uluaGetMatrix( L, 2 ); uluaPushQuaternion( L, QuaternionTransform( q, mat ) ); return 1; } /* > result = RL.QuaternionEquals( Quaternion q1, Quaternion q2 ) Check whether two given quaternions are almost equal - Success return bool */ int lmathQuaternionEquals( lua_State* L ) { Quaternion q1 = uluaGetQuaternion( L, 1 ); Quaternion q2 = uluaGetQuaternion( L, 2 ); lua_pushboolean( L, QuaternionEquals( q1, q2 ) == 1 ); return 1; } /* ## Math - Frustum */ static Frustum getFrustum( lua_State* L, int index ) { luaL_checktype( L, index, LUA_TTABLE ); Frustum frustum = { 0 }; int t = index, i = 0; lua_pushnil( L ); while ( lua_next( L, t ) != 0 && i < 6 ) { frustum.Planes[i] = uluaGetVector4( L, lua_gettop( L ) ); i++; lua_pop( L, 1 ); } return frustum; } static int pushFrustum( lua_State* L, Frustum* frustum ) { lua_createtable( L, 6, 0 ); for ( int i = 0; i < 6; i++ ) { uluaPushVector4( L, frustum->Planes[i] ); lua_rawseti( L, -2, 1 + i ); } return 1; } /* > frustum = RL.ExtractFrustum( Matrix projection, Matrix modelview ) Extract frustum from projection and modelView matrices. - Success return Vector4{} */ int lmathExtractFrustum( lua_State* L ) { Matrix projection = uluaGetMatrix( L, 1 ); Matrix modelview = uluaGetMatrix( L, 2 ); Frustum frustum = { 0 }; ExtractFrustum( &frustum, projection, modelview ); pushFrustum( L, &frustum ); return 1; } /* > inFrustum = RL.PointInFrustum( Vector4{} frustum, Vector3 position ) Check if point inside frustum - Success return bool */ int lmathPointInFrustum( lua_State* L ) { Frustum frustum = getFrustum( L, 1 ); Vector3 position = uluaGetVector3( L, 2 ); lua_pushboolean( L, PointInFrustumV( &frustum, position ) ); return 1; } /* > inFrustum = RL.SphereInFrustum( Vector4{} frustum, Vector3 position ) Check if sphere inside frustum - Success return bool */ int lmathSphereInFrustum( lua_State* L ) { Frustum frustum = getFrustum( L, 1 ); Vector3 position = uluaGetVector3( L, 2 ); float radius = luaL_checknumber( L, 3 ); lua_pushboolean( L, SphereInFrustumV( &frustum, position, radius ) ); return 1; } /* > inFrustum = RL.AABBInFrustum( Vector4{} frustum, Vector3 min, Vector3 max ) Check if AABB inside frustum - Success return bool */ int lmathAABBInFrustum( lua_State* L ) { Frustum frustum = getFrustum( L, 1 ); Vector3 min = uluaGetVector3( L, 2 ); Vector3 max = uluaGetVector3( L, 3 ); lua_pushboolean( L, AABBoxInFrustum( &frustum, min, max ) ); return 1; }