Initial switch to raylib 5.5.
This commit is contained in:
@@ -1,6 +1,6 @@
|
||||
/**********************************************************************************************
|
||||
*
|
||||
* raymath v1.5 - Math functions to work with Vector2, Vector3, Matrix and Quaternions
|
||||
* raymath v2.0 - Math functions to work with Vector2, Vector3, Matrix and Quaternions
|
||||
*
|
||||
* CONVENTIONS:
|
||||
* - Matrix structure is defined as row-major (memory layout) but parameters naming AND all
|
||||
@@ -12,7 +12,7 @@
|
||||
* - Functions are always self-contained, no function use another raymath function inside,
|
||||
* required code is directly re-implemented inside
|
||||
* - Functions input parameters are always received by value (2 unavoidable exceptions)
|
||||
* - Functions use always a "result" variable for return
|
||||
* - Functions use always a "result" variable for return (except C++ operators)
|
||||
* - Functions are always defined inline
|
||||
* - Angles are always in radians (DEG2RAD/RAD2DEG macros provided for convenience)
|
||||
* - No compound literals used to make sure libray is compatible with C++
|
||||
@@ -27,10 +27,12 @@
|
||||
* Define static inline functions code, so #include header suffices for use.
|
||||
* This may use up lots of memory.
|
||||
*
|
||||
* #define RAYMATH_DISABLE_CPP_OPERATORS
|
||||
* Disables C++ operator overloads for raymath types.
|
||||
*
|
||||
* LICENSE: zlib/libpng
|
||||
*
|
||||
* Copyright (c) 2015-2023 Ramon Santamaria (@raysan5)
|
||||
* Copyright (c) 2015-2024 Ramon Santamaria (@raysan5)
|
||||
*
|
||||
* This software is provided "as-is", without any express or implied warranty. In no event
|
||||
* will the authors be held liable for any damages arising from the use of this software.
|
||||
@@ -59,7 +61,9 @@
|
||||
// Function specifiers definition
|
||||
#if defined(RAYMATH_IMPLEMENTATION)
|
||||
#if defined(_WIN32) && defined(BUILD_LIBTYPE_SHARED)
|
||||
#define RMAPI __declspec(dllexport) extern inline // We are building raylib as a Win32 shared library (.dll).
|
||||
#define RMAPI __declspec(dllexport) extern inline // We are building raylib as a Win32 shared library (.dll)
|
||||
#elif defined(BUILD_LIBTYPE_SHARED)
|
||||
#define RMAPI __attribute__((visibility("default"))) // We are building raylib as a Unix shared library (.so/.dylib)
|
||||
#elif defined(_WIN32) && defined(USE_LIBTYPE_SHARED)
|
||||
#define RMAPI __declspec(dllimport) // We are using raylib as a Win32 shared library (.dll)
|
||||
#else
|
||||
@@ -75,6 +79,7 @@
|
||||
#endif
|
||||
#endif
|
||||
|
||||
|
||||
//----------------------------------------------------------------------------------
|
||||
// Defines and Macros
|
||||
//----------------------------------------------------------------------------------
|
||||
@@ -163,7 +168,7 @@ typedef struct float16 {
|
||||
float v[16];
|
||||
} float16;
|
||||
|
||||
#include <math.h> // Required for: sinf(), cosf(), tan(), atan2f(), sqrtf(), floor(), fminf(), fmaxf(), fabs()
|
||||
#include <math.h> // Required for: sinf(), cosf(), tan(), atan2f(), sqrtf(), floor(), fminf(), fmaxf(), fabsf()
|
||||
|
||||
//----------------------------------------------------------------------------------
|
||||
// Module Functions Definition - Utils math
|
||||
@@ -429,6 +434,28 @@ RMAPI Vector2 Vector2Reflect(Vector2 v, Vector2 normal)
|
||||
return result;
|
||||
}
|
||||
|
||||
// Get min value for each pair of components
|
||||
RMAPI Vector2 Vector2Min(Vector2 v1, Vector2 v2)
|
||||
{
|
||||
Vector2 result = { 0 };
|
||||
|
||||
result.x = fminf(v1.x, v2.x);
|
||||
result.y = fminf(v1.y, v2.y);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
// Get max value for each pair of components
|
||||
RMAPI Vector2 Vector2Max(Vector2 v1, Vector2 v2)
|
||||
{
|
||||
Vector2 result = { 0 };
|
||||
|
||||
result.x = fmaxf(v1.x, v2.x);
|
||||
result.y = fmaxf(v1.y, v2.y);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
// Rotate vector by angle
|
||||
RMAPI Vector2 Vector2Rotate(Vector2 v, float angle)
|
||||
{
|
||||
@@ -492,18 +519,18 @@ RMAPI Vector2 Vector2ClampValue(Vector2 v, float min, float max)
|
||||
{
|
||||
length = sqrtf(length);
|
||||
|
||||
float scale = 1; // By default, 1 as the neutral element.
|
||||
if (length < min)
|
||||
{
|
||||
float scale = min/length;
|
||||
result.x = v.x*scale;
|
||||
result.y = v.y*scale;
|
||||
scale = min/length;
|
||||
}
|
||||
else if (length > max)
|
||||
{
|
||||
float scale = max/length;
|
||||
result.x = v.x*scale;
|
||||
result.y = v.y*scale;
|
||||
scale = max/length;
|
||||
}
|
||||
|
||||
result.x = v.x*scale;
|
||||
result.y = v.y*scale;
|
||||
}
|
||||
|
||||
return result;
|
||||
@@ -522,6 +549,31 @@ RMAPI int Vector2Equals(Vector2 p, Vector2 q)
|
||||
return result;
|
||||
}
|
||||
|
||||
// Compute the direction of a refracted ray
|
||||
// v: normalized direction of the incoming ray
|
||||
// n: normalized normal vector of the interface of two optical media
|
||||
// r: ratio of the refractive index of the medium from where the ray comes
|
||||
// to the refractive index of the medium on the other side of the surface
|
||||
RMAPI Vector2 Vector2Refract(Vector2 v, Vector2 n, float r)
|
||||
{
|
||||
Vector2 result = { 0 };
|
||||
|
||||
float dot = v.x*n.x + v.y*n.y;
|
||||
float d = 1.0f - r*r*(1.0f - dot*dot);
|
||||
|
||||
if (d >= 0.0f)
|
||||
{
|
||||
d = sqrtf(d);
|
||||
v.x = r*v.x - (r*dot + d)*n.x;
|
||||
v.y = r*v.y - (r*dot + d)*n.y;
|
||||
|
||||
result = v;
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
//----------------------------------------------------------------------------------
|
||||
// Module Functions Definition - Vector3 math
|
||||
//----------------------------------------------------------------------------------
|
||||
@@ -603,12 +655,12 @@ RMAPI Vector3 Vector3Perpendicular(Vector3 v)
|
||||
{
|
||||
Vector3 result = { 0 };
|
||||
|
||||
float min = (float) fabs(v.x);
|
||||
float min = fabsf(v.x);
|
||||
Vector3 cardinalAxis = {1.0f, 0.0f, 0.0f};
|
||||
|
||||
if (fabsf(v.y) < min)
|
||||
{
|
||||
min = (float) fabs(v.y);
|
||||
min = fabsf(v.y);
|
||||
Vector3 tmp = {0.0f, 1.0f, 0.0f};
|
||||
cardinalAxis = tmp;
|
||||
}
|
||||
@@ -728,7 +780,7 @@ RMAPI Vector3 Vector3Normalize(Vector3 v)
|
||||
RMAPI Vector3 Vector3Project(Vector3 v1, Vector3 v2)
|
||||
{
|
||||
Vector3 result = { 0 };
|
||||
|
||||
|
||||
float v1dv2 = (v1.x*v2.x + v1.y*v2.y + v1.z*v2.z);
|
||||
float v2dv2 = (v2.x*v2.x + v2.y*v2.y + v2.z*v2.z);
|
||||
|
||||
@@ -745,7 +797,7 @@ RMAPI Vector3 Vector3Project(Vector3 v1, Vector3 v2)
|
||||
RMAPI Vector3 Vector3Reject(Vector3 v1, Vector3 v2)
|
||||
{
|
||||
Vector3 result = { 0 };
|
||||
|
||||
|
||||
float v1dv2 = (v1.x*v2.x + v1.y*v2.y + v1.z*v2.z);
|
||||
float v2dv2 = (v2.x*v2.x + v2.y*v2.y + v2.z*v2.z);
|
||||
|
||||
@@ -832,7 +884,7 @@ RMAPI Vector3 Vector3RotateByAxisAngle(Vector3 v, Vector3 axis, float angle)
|
||||
// Vector3Normalize(axis);
|
||||
float length = sqrtf(axis.x*axis.x + axis.y*axis.y + axis.z*axis.z);
|
||||
if (length == 0.0f) length = 1.0f;
|
||||
float ilength = 1.0f / length;
|
||||
float ilength = 1.0f/length;
|
||||
axis.x *= ilength;
|
||||
axis.y *= ilength;
|
||||
axis.z *= ilength;
|
||||
@@ -873,6 +925,27 @@ RMAPI Vector3 Vector3RotateByAxisAngle(Vector3 v, Vector3 axis, float angle)
|
||||
return result;
|
||||
}
|
||||
|
||||
// Move Vector towards target
|
||||
RMAPI Vector3 Vector3MoveTowards(Vector3 v, Vector3 target, float maxDistance)
|
||||
{
|
||||
Vector3 result = { 0 };
|
||||
|
||||
float dx = target.x - v.x;
|
||||
float dy = target.y - v.y;
|
||||
float dz = target.z - v.z;
|
||||
float value = (dx*dx) + (dy*dy) + (dz*dz);
|
||||
|
||||
if ((value == 0) || ((maxDistance >= 0) && (value <= maxDistance*maxDistance))) return target;
|
||||
|
||||
float dist = sqrtf(value);
|
||||
|
||||
result.x = v.x + dx/dist*maxDistance;
|
||||
result.y = v.y + dy/dist*maxDistance;
|
||||
result.z = v.z + dz/dist*maxDistance;
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
// Calculate linear interpolation between two vectors
|
||||
RMAPI Vector3 Vector3Lerp(Vector3 v1, Vector3 v2, float amount)
|
||||
{
|
||||
@@ -885,6 +958,22 @@ RMAPI Vector3 Vector3Lerp(Vector3 v1, Vector3 v2, float amount)
|
||||
return result;
|
||||
}
|
||||
|
||||
// Calculate cubic hermite interpolation between two vectors and their tangents
|
||||
// as described in the GLTF 2.0 specification: https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html#interpolation-cubic
|
||||
RMAPI Vector3 Vector3CubicHermite(Vector3 v1, Vector3 tangent1, Vector3 v2, Vector3 tangent2, float amount)
|
||||
{
|
||||
Vector3 result = { 0 };
|
||||
|
||||
float amountPow2 = amount*amount;
|
||||
float amountPow3 = amount*amount*amount;
|
||||
|
||||
result.x = (2*amountPow3 - 3*amountPow2 + 1)*v1.x + (amountPow3 - 2*amountPow2 + amount)*tangent1.x + (-2*amountPow3 + 3*amountPow2)*v2.x + (amountPow3 - amountPow2)*tangent2.x;
|
||||
result.y = (2*amountPow3 - 3*amountPow2 + 1)*v1.y + (amountPow3 - 2*amountPow2 + amount)*tangent1.y + (-2*amountPow3 + 3*amountPow2)*v2.y + (amountPow3 - amountPow2)*tangent2.y;
|
||||
result.z = (2*amountPow3 - 3*amountPow2 + 1)*v1.z + (amountPow3 - 2*amountPow2 + amount)*tangent1.z + (-2*amountPow3 + 3*amountPow2)*v2.z + (amountPow3 - amountPow2)*tangent2.z;
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
// Calculate reflected vector to normal
|
||||
RMAPI Vector3 Vector3Reflect(Vector3 v, Vector3 normal)
|
||||
{
|
||||
@@ -1078,20 +1167,19 @@ RMAPI Vector3 Vector3ClampValue(Vector3 v, float min, float max)
|
||||
{
|
||||
length = sqrtf(length);
|
||||
|
||||
float scale = 1; // By default, 1 as the neutral element.
|
||||
if (length < min)
|
||||
{
|
||||
float scale = min/length;
|
||||
result.x = v.x*scale;
|
||||
result.y = v.y*scale;
|
||||
result.z = v.z*scale;
|
||||
scale = min/length;
|
||||
}
|
||||
else if (length > max)
|
||||
{
|
||||
float scale = max/length;
|
||||
result.x = v.x*scale;
|
||||
result.y = v.y*scale;
|
||||
result.z = v.z*scale;
|
||||
scale = max/length;
|
||||
}
|
||||
|
||||
result.x = v.x*scale;
|
||||
result.y = v.y*scale;
|
||||
result.z = v.z*scale;
|
||||
}
|
||||
|
||||
return result;
|
||||
@@ -1136,6 +1224,233 @@ RMAPI Vector3 Vector3Refract(Vector3 v, Vector3 n, float r)
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
//----------------------------------------------------------------------------------
|
||||
// Module Functions Definition - Vector4 math
|
||||
//----------------------------------------------------------------------------------
|
||||
|
||||
RMAPI Vector4 Vector4Zero(void)
|
||||
{
|
||||
Vector4 result = { 0.0f, 0.0f, 0.0f, 0.0f };
|
||||
return result;
|
||||
}
|
||||
|
||||
RMAPI Vector4 Vector4One(void)
|
||||
{
|
||||
Vector4 result = { 1.0f, 1.0f, 1.0f, 1.0f };
|
||||
return result;
|
||||
}
|
||||
|
||||
RMAPI Vector4 Vector4Add(Vector4 v1, Vector4 v2)
|
||||
{
|
||||
Vector4 result = {
|
||||
v1.x + v2.x,
|
||||
v1.y + v2.y,
|
||||
v1.z + v2.z,
|
||||
v1.w + v2.w
|
||||
};
|
||||
return result;
|
||||
}
|
||||
|
||||
RMAPI Vector4 Vector4AddValue(Vector4 v, float add)
|
||||
{
|
||||
Vector4 result = {
|
||||
v.x + add,
|
||||
v.y + add,
|
||||
v.z + add,
|
||||
v.w + add
|
||||
};
|
||||
return result;
|
||||
}
|
||||
|
||||
RMAPI Vector4 Vector4Subtract(Vector4 v1, Vector4 v2)
|
||||
{
|
||||
Vector4 result = {
|
||||
v1.x - v2.x,
|
||||
v1.y - v2.y,
|
||||
v1.z - v2.z,
|
||||
v1.w - v2.w
|
||||
};
|
||||
return result;
|
||||
}
|
||||
|
||||
RMAPI Vector4 Vector4SubtractValue(Vector4 v, float add)
|
||||
{
|
||||
Vector4 result = {
|
||||
v.x - add,
|
||||
v.y - add,
|
||||
v.z - add,
|
||||
v.w - add
|
||||
};
|
||||
return result;
|
||||
}
|
||||
|
||||
RMAPI float Vector4Length(Vector4 v)
|
||||
{
|
||||
float result = sqrtf((v.x*v.x) + (v.y*v.y) + (v.z*v.z) + (v.w*v.w));
|
||||
return result;
|
||||
}
|
||||
|
||||
RMAPI float Vector4LengthSqr(Vector4 v)
|
||||
{
|
||||
float result = (v.x*v.x) + (v.y*v.y) + (v.z*v.z) + (v.w*v.w);
|
||||
return result;
|
||||
}
|
||||
|
||||
RMAPI float Vector4DotProduct(Vector4 v1, Vector4 v2)
|
||||
{
|
||||
float result = (v1.x*v2.x + v1.y*v2.y + v1.z*v2.z + v1.w*v2.w);
|
||||
return result;
|
||||
}
|
||||
|
||||
// Calculate distance between two vectors
|
||||
RMAPI float Vector4Distance(Vector4 v1, Vector4 v2)
|
||||
{
|
||||
float result = sqrtf(
|
||||
(v1.x - v2.x)*(v1.x - v2.x) + (v1.y - v2.y)*(v1.y - v2.y) +
|
||||
(v1.z - v2.z)*(v1.z - v2.z) + (v1.w - v2.w)*(v1.w - v2.w));
|
||||
return result;
|
||||
}
|
||||
|
||||
// Calculate square distance between two vectors
|
||||
RMAPI float Vector4DistanceSqr(Vector4 v1, Vector4 v2)
|
||||
{
|
||||
float result =
|
||||
(v1.x - v2.x)*(v1.x - v2.x) + (v1.y - v2.y)*(v1.y - v2.y) +
|
||||
(v1.z - v2.z)*(v1.z - v2.z) + (v1.w - v2.w)*(v1.w - v2.w);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
RMAPI Vector4 Vector4Scale(Vector4 v, float scale)
|
||||
{
|
||||
Vector4 result = { v.x*scale, v.y*scale, v.z*scale, v.w*scale };
|
||||
return result;
|
||||
}
|
||||
|
||||
// Multiply vector by vector
|
||||
RMAPI Vector4 Vector4Multiply(Vector4 v1, Vector4 v2)
|
||||
{
|
||||
Vector4 result = { v1.x*v2.x, v1.y*v2.y, v1.z*v2.z, v1.w*v2.w };
|
||||
return result;
|
||||
}
|
||||
|
||||
// Negate vector
|
||||
RMAPI Vector4 Vector4Negate(Vector4 v)
|
||||
{
|
||||
Vector4 result = { -v.x, -v.y, -v.z, -v.w };
|
||||
return result;
|
||||
}
|
||||
|
||||
// Divide vector by vector
|
||||
RMAPI Vector4 Vector4Divide(Vector4 v1, Vector4 v2)
|
||||
{
|
||||
Vector4 result = { v1.x/v2.x, v1.y/v2.y, v1.z/v2.z, v1.w/v2.w };
|
||||
return result;
|
||||
}
|
||||
|
||||
// Normalize provided vector
|
||||
RMAPI Vector4 Vector4Normalize(Vector4 v)
|
||||
{
|
||||
Vector4 result = { 0 };
|
||||
float length = sqrtf((v.x*v.x) + (v.y*v.y) + (v.z*v.z) + (v.w*v.w));
|
||||
|
||||
if (length > 0)
|
||||
{
|
||||
float ilength = 1.0f/length;
|
||||
result.x = v.x*ilength;
|
||||
result.y = v.y*ilength;
|
||||
result.z = v.z*ilength;
|
||||
result.w = v.w*ilength;
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
// Get min value for each pair of components
|
||||
RMAPI Vector4 Vector4Min(Vector4 v1, Vector4 v2)
|
||||
{
|
||||
Vector4 result = { 0 };
|
||||
|
||||
result.x = fminf(v1.x, v2.x);
|
||||
result.y = fminf(v1.y, v2.y);
|
||||
result.z = fminf(v1.z, v2.z);
|
||||
result.w = fminf(v1.w, v2.w);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
// Get max value for each pair of components
|
||||
RMAPI Vector4 Vector4Max(Vector4 v1, Vector4 v2)
|
||||
{
|
||||
Vector4 result = { 0 };
|
||||
|
||||
result.x = fmaxf(v1.x, v2.x);
|
||||
result.y = fmaxf(v1.y, v2.y);
|
||||
result.z = fmaxf(v1.z, v2.z);
|
||||
result.w = fmaxf(v1.w, v2.w);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
// Calculate linear interpolation between two vectors
|
||||
RMAPI Vector4 Vector4Lerp(Vector4 v1, Vector4 v2, float amount)
|
||||
{
|
||||
Vector4 result = { 0 };
|
||||
|
||||
result.x = v1.x + amount*(v2.x - v1.x);
|
||||
result.y = v1.y + amount*(v2.y - v1.y);
|
||||
result.z = v1.z + amount*(v2.z - v1.z);
|
||||
result.w = v1.w + amount*(v2.w - v1.w);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
// Move Vector towards target
|
||||
RMAPI Vector4 Vector4MoveTowards(Vector4 v, Vector4 target, float maxDistance)
|
||||
{
|
||||
Vector4 result = { 0 };
|
||||
|
||||
float dx = target.x - v.x;
|
||||
float dy = target.y - v.y;
|
||||
float dz = target.z - v.z;
|
||||
float dw = target.w - v.w;
|
||||
float value = (dx*dx) + (dy*dy) + (dz*dz) + (dw*dw);
|
||||
|
||||
if ((value == 0) || ((maxDistance >= 0) && (value <= maxDistance*maxDistance))) return target;
|
||||
|
||||
float dist = sqrtf(value);
|
||||
|
||||
result.x = v.x + dx/dist*maxDistance;
|
||||
result.y = v.y + dy/dist*maxDistance;
|
||||
result.z = v.z + dz/dist*maxDistance;
|
||||
result.w = v.w + dw/dist*maxDistance;
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
// Invert the given vector
|
||||
RMAPI Vector4 Vector4Invert(Vector4 v)
|
||||
{
|
||||
Vector4 result = { 1.0f/v.x, 1.0f/v.y, 1.0f/v.z, 1.0f/v.w };
|
||||
return result;
|
||||
}
|
||||
|
||||
// Check whether two given vectors are almost equal
|
||||
RMAPI int Vector4Equals(Vector4 p, Vector4 q)
|
||||
{
|
||||
#if !defined(EPSILON)
|
||||
#define EPSILON 0.000001f
|
||||
#endif
|
||||
|
||||
int result = ((fabsf(p.x - q.x)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.x), fabsf(q.x))))) &&
|
||||
((fabsf(p.y - q.y)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.y), fabsf(q.y))))) &&
|
||||
((fabsf(p.z - q.z)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.z), fabsf(q.z))))) &&
|
||||
((fabsf(p.w - q.w)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.w), fabsf(q.w)))));
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
//----------------------------------------------------------------------------------
|
||||
// Module Functions Definition - Matrix math
|
||||
//----------------------------------------------------------------------------------
|
||||
@@ -1524,32 +1839,32 @@ RMAPI Matrix MatrixScale(float x, float y, float z)
|
||||
}
|
||||
|
||||
// Get perspective projection matrix
|
||||
RMAPI Matrix MatrixFrustum(double left, double right, double bottom, double top, double near, double far)
|
||||
RMAPI Matrix MatrixFrustum(double left, double right, double bottom, double top, double nearPlane, double farPlane)
|
||||
{
|
||||
Matrix result = { 0 };
|
||||
|
||||
float rl = (float)(right - left);
|
||||
float tb = (float)(top - bottom);
|
||||
float fn = (float)(far - near);
|
||||
float fn = (float)(farPlane - nearPlane);
|
||||
|
||||
result.m0 = ((float)near*2.0f)/rl;
|
||||
result.m0 = ((float)nearPlane*2.0f)/rl;
|
||||
result.m1 = 0.0f;
|
||||
result.m2 = 0.0f;
|
||||
result.m3 = 0.0f;
|
||||
|
||||
result.m4 = 0.0f;
|
||||
result.m5 = ((float)near*2.0f)/tb;
|
||||
result.m5 = ((float)nearPlane*2.0f)/tb;
|
||||
result.m6 = 0.0f;
|
||||
result.m7 = 0.0f;
|
||||
|
||||
result.m8 = ((float)right + (float)left)/rl;
|
||||
result.m9 = ((float)top + (float)bottom)/tb;
|
||||
result.m10 = -((float)far + (float)near)/fn;
|
||||
result.m10 = -((float)farPlane + (float)nearPlane)/fn;
|
||||
result.m11 = -1.0f;
|
||||
|
||||
result.m12 = 0.0f;
|
||||
result.m13 = 0.0f;
|
||||
result.m14 = -((float)far*(float)near*2.0f)/fn;
|
||||
result.m14 = -((float)farPlane*(float)nearPlane*2.0f)/fn;
|
||||
result.m15 = 0.0f;
|
||||
|
||||
return result;
|
||||
@@ -1901,6 +2216,32 @@ RMAPI Quaternion QuaternionSlerp(Quaternion q1, Quaternion q2, float amount)
|
||||
return result;
|
||||
}
|
||||
|
||||
// Calculate quaternion cubic spline interpolation using Cubic Hermite Spline algorithm
|
||||
// as described in the GLTF 2.0 specification: https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html#interpolation-cubic
|
||||
RMAPI Quaternion QuaternionCubicHermiteSpline(Quaternion q1, Quaternion outTangent1, Quaternion q2, Quaternion inTangent2, float t)
|
||||
{
|
||||
float t2 = t*t;
|
||||
float t3 = t2*t;
|
||||
float h00 = 2*t3 - 3*t2 + 1;
|
||||
float h10 = t3 - 2*t2 + t;
|
||||
float h01 = -2*t3 + 3*t2;
|
||||
float h11 = t3 - t2;
|
||||
|
||||
Quaternion p0 = QuaternionScale(q1, h00);
|
||||
Quaternion m0 = QuaternionScale(outTangent1, h10);
|
||||
Quaternion p1 = QuaternionScale(q2, h01);
|
||||
Quaternion m1 = QuaternionScale(inTangent2, h11);
|
||||
|
||||
Quaternion result = { 0 };
|
||||
|
||||
result = QuaternionAdd(p0, m0);
|
||||
result = QuaternionAdd(result, p1);
|
||||
result = QuaternionAdd(result, m1);
|
||||
result = QuaternionNormalize(result);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
// Calculate quaternion based on the rotation from one vector to another
|
||||
RMAPI Quaternion QuaternionFromVector3ToVector3(Vector3 from, Vector3 to)
|
||||
{
|
||||
@@ -1960,7 +2301,7 @@ RMAPI Quaternion QuaternionFromMatrix(Matrix mat)
|
||||
}
|
||||
|
||||
float biggestVal = sqrtf(fourBiggestSquaredMinus1 + 1.0f)*0.5f;
|
||||
float mult = 0.25f / biggestVal;
|
||||
float mult = 0.25f/biggestVal;
|
||||
|
||||
switch (biggestIndex)
|
||||
{
|
||||
@@ -2042,8 +2383,7 @@ RMAPI Quaternion QuaternionFromAxisAngle(Vector3 axis, float angle)
|
||||
float ilength = 0.0f;
|
||||
|
||||
// Vector3Normalize(axis)
|
||||
Vector3 v = axis;
|
||||
length = sqrtf(v.x*v.x + v.y*v.y + v.z*v.z);
|
||||
length = axisLength;
|
||||
if (length == 0.0f) length = 1.0f;
|
||||
ilength = 1.0f/length;
|
||||
axis.x *= ilength;
|
||||
@@ -2187,4 +2527,415 @@ RMAPI int QuaternionEquals(Quaternion p, Quaternion q)
|
||||
return result;
|
||||
}
|
||||
|
||||
// Decompose a transformation matrix into its rotational, translational and scaling components
|
||||
RMAPI void MatrixDecompose(Matrix mat, Vector3 *translation, Quaternion *rotation, Vector3 *scale)
|
||||
{
|
||||
// Extract translation.
|
||||
translation->x = mat.m12;
|
||||
translation->y = mat.m13;
|
||||
translation->z = mat.m14;
|
||||
|
||||
// Extract upper-left for determinant computation
|
||||
const float a = mat.m0;
|
||||
const float b = mat.m4;
|
||||
const float c = mat.m8;
|
||||
const float d = mat.m1;
|
||||
const float e = mat.m5;
|
||||
const float f = mat.m9;
|
||||
const float g = mat.m2;
|
||||
const float h = mat.m6;
|
||||
const float i = mat.m10;
|
||||
const float A = e*i - f*h;
|
||||
const float B = f*g - d*i;
|
||||
const float C = d*h - e*g;
|
||||
|
||||
// Extract scale
|
||||
const float det = a*A + b*B + c*C;
|
||||
Vector3 abc = { a, b, c };
|
||||
Vector3 def = { d, e, f };
|
||||
Vector3 ghi = { g, h, i };
|
||||
|
||||
float scalex = Vector3Length(abc);
|
||||
float scaley = Vector3Length(def);
|
||||
float scalez = Vector3Length(ghi);
|
||||
Vector3 s = { scalex, scaley, scalez };
|
||||
|
||||
if (det < 0) s = Vector3Negate(s);
|
||||
|
||||
*scale = s;
|
||||
|
||||
// Remove scale from the matrix if it is not close to zero
|
||||
Matrix clone = mat;
|
||||
if (!FloatEquals(det, 0))
|
||||
{
|
||||
clone.m0 /= s.x;
|
||||
clone.m4 /= s.x;
|
||||
clone.m8 /= s.x;
|
||||
clone.m1 /= s.y;
|
||||
clone.m5 /= s.y;
|
||||
clone.m9 /= s.y;
|
||||
clone.m2 /= s.z;
|
||||
clone.m6 /= s.z;
|
||||
clone.m10 /= s.z;
|
||||
|
||||
// Extract rotation
|
||||
*rotation = QuaternionFromMatrix(clone);
|
||||
}
|
||||
else
|
||||
{
|
||||
// Set to identity if close to zero
|
||||
*rotation = QuaternionIdentity();
|
||||
}
|
||||
}
|
||||
|
||||
#if defined(__cplusplus) && !defined(RAYMATH_DISABLE_CPP_OPERATORS)
|
||||
|
||||
// Optional C++ math operators
|
||||
//-------------------------------------------------------------------------------
|
||||
|
||||
// Vector2 operators
|
||||
static constexpr Vector2 Vector2Zeros = { 0, 0 };
|
||||
static constexpr Vector2 Vector2Ones = { 1, 1 };
|
||||
static constexpr Vector2 Vector2UnitX = { 1, 0 };
|
||||
static constexpr Vector2 Vector2UnitY = { 0, 1 };
|
||||
|
||||
inline Vector2 operator + (const Vector2& lhs, const Vector2& rhs)
|
||||
{
|
||||
return Vector2Add(lhs, rhs);
|
||||
}
|
||||
|
||||
inline const Vector2& operator += (Vector2& lhs, const Vector2& rhs)
|
||||
{
|
||||
lhs = Vector2Add(lhs, rhs);
|
||||
return lhs;
|
||||
}
|
||||
|
||||
inline Vector2 operator - (const Vector2& lhs, const Vector2& rhs)
|
||||
{
|
||||
return Vector2Subtract(lhs, rhs);
|
||||
}
|
||||
|
||||
inline const Vector2& operator -= (Vector2& lhs, const Vector2& rhs)
|
||||
{
|
||||
lhs = Vector2Subtract(lhs, rhs);
|
||||
return lhs;
|
||||
}
|
||||
|
||||
inline Vector2 operator * (const Vector2& lhs, const float& rhs)
|
||||
{
|
||||
return Vector2Scale(lhs, rhs);
|
||||
}
|
||||
|
||||
inline const Vector2& operator *= (Vector2& lhs, const float& rhs)
|
||||
{
|
||||
lhs = Vector2Scale(lhs, rhs);
|
||||
return lhs;
|
||||
}
|
||||
|
||||
inline Vector2 operator * (const Vector2& lhs, const Vector2& rhs)
|
||||
{
|
||||
return Vector2Multiply(lhs, rhs);
|
||||
}
|
||||
|
||||
inline const Vector2& operator *= (Vector2& lhs, const Vector2& rhs)
|
||||
{
|
||||
lhs = Vector2Multiply(lhs, rhs);
|
||||
return lhs;
|
||||
}
|
||||
|
||||
inline Vector2 operator * (const Vector2& lhs, const Matrix& rhs)
|
||||
{
|
||||
return Vector2Transform(lhs, rhs);
|
||||
}
|
||||
|
||||
inline const Vector2& operator -= (Vector2& lhs, const Matrix& rhs)
|
||||
{
|
||||
lhs = Vector2Transform(lhs, rhs);
|
||||
return lhs;
|
||||
}
|
||||
|
||||
inline Vector2 operator / (const Vector2& lhs, const float& rhs)
|
||||
{
|
||||
return Vector2Scale(lhs, 1.0f / rhs);
|
||||
}
|
||||
|
||||
inline const Vector2& operator /= (Vector2& lhs, const float& rhs)
|
||||
{
|
||||
lhs = Vector2Scale(lhs, rhs);
|
||||
return lhs;
|
||||
}
|
||||
|
||||
inline Vector2 operator / (const Vector2& lhs, const Vector2& rhs)
|
||||
{
|
||||
return Vector2Divide(lhs, rhs);
|
||||
}
|
||||
|
||||
inline const Vector2& operator /= (Vector2& lhs, const Vector2& rhs)
|
||||
{
|
||||
lhs = Vector2Divide(lhs, rhs);
|
||||
return lhs;
|
||||
}
|
||||
|
||||
inline bool operator == (const Vector2& lhs, const Vector2& rhs)
|
||||
{
|
||||
return FloatEquals(lhs.x, rhs.x) && FloatEquals(lhs.y, rhs.y);
|
||||
}
|
||||
|
||||
inline bool operator != (const Vector2& lhs, const Vector2& rhs)
|
||||
{
|
||||
return !FloatEquals(lhs.x, rhs.x) || !FloatEquals(lhs.y, rhs.y);
|
||||
}
|
||||
|
||||
// Vector3 operators
|
||||
static constexpr Vector3 Vector3Zeros = { 0, 0, 0 };
|
||||
static constexpr Vector3 Vector3Ones = { 1, 1, 1 };
|
||||
static constexpr Vector3 Vector3UnitX = { 1, 0, 0 };
|
||||
static constexpr Vector3 Vector3UnitY = { 0, 1, 0 };
|
||||
static constexpr Vector3 Vector3UnitZ = { 0, 0, 1 };
|
||||
|
||||
inline Vector3 operator + (const Vector3& lhs, const Vector3& rhs)
|
||||
{
|
||||
return Vector3Add(lhs, rhs);
|
||||
}
|
||||
|
||||
inline const Vector3& operator += (Vector3& lhs, const Vector3& rhs)
|
||||
{
|
||||
lhs = Vector3Add(lhs, rhs);
|
||||
return lhs;
|
||||
}
|
||||
|
||||
inline Vector3 operator - (const Vector3& lhs, const Vector3& rhs)
|
||||
{
|
||||
return Vector3Subtract(lhs, rhs);
|
||||
}
|
||||
|
||||
inline const Vector3& operator -= (Vector3& lhs, const Vector3& rhs)
|
||||
{
|
||||
lhs = Vector3Subtract(lhs, rhs);
|
||||
return lhs;
|
||||
}
|
||||
|
||||
inline Vector3 operator * (const Vector3& lhs, const float& rhs)
|
||||
{
|
||||
return Vector3Scale(lhs, rhs);
|
||||
}
|
||||
|
||||
inline const Vector3& operator *= (Vector3& lhs, const float& rhs)
|
||||
{
|
||||
lhs = Vector3Scale(lhs, rhs);
|
||||
return lhs;
|
||||
}
|
||||
|
||||
inline Vector3 operator * (const Vector3& lhs, const Vector3& rhs)
|
||||
{
|
||||
return Vector3Multiply(lhs, rhs);
|
||||
}
|
||||
|
||||
inline const Vector3& operator *= (Vector3& lhs, const Vector3& rhs)
|
||||
{
|
||||
lhs = Vector3Multiply(lhs, rhs);
|
||||
return lhs;
|
||||
}
|
||||
|
||||
inline Vector3 operator * (const Vector3& lhs, const Matrix& rhs)
|
||||
{
|
||||
return Vector3Transform(lhs, rhs);
|
||||
}
|
||||
|
||||
inline const Vector3& operator -= (Vector3& lhs, const Matrix& rhs)
|
||||
{
|
||||
lhs = Vector3Transform(lhs, rhs);
|
||||
return lhs;
|
||||
}
|
||||
|
||||
inline Vector3 operator / (const Vector3& lhs, const float& rhs)
|
||||
{
|
||||
return Vector3Scale(lhs, 1.0f / rhs);
|
||||
}
|
||||
|
||||
inline const Vector3& operator /= (Vector3& lhs, const float& rhs)
|
||||
{
|
||||
lhs = Vector3Scale(lhs, rhs);
|
||||
return lhs;
|
||||
}
|
||||
|
||||
inline Vector3 operator / (const Vector3& lhs, const Vector3& rhs)
|
||||
{
|
||||
return Vector3Divide(lhs, rhs);
|
||||
}
|
||||
|
||||
inline const Vector3& operator /= (Vector3& lhs, const Vector3& rhs)
|
||||
{
|
||||
lhs = Vector3Divide(lhs, rhs);
|
||||
return lhs;
|
||||
}
|
||||
|
||||
inline bool operator == (const Vector3& lhs, const Vector3& rhs)
|
||||
{
|
||||
return FloatEquals(lhs.x, rhs.x) && FloatEquals(lhs.y, rhs.y) && FloatEquals(lhs.z, rhs.z);
|
||||
}
|
||||
|
||||
inline bool operator != (const Vector3& lhs, const Vector3& rhs)
|
||||
{
|
||||
return !FloatEquals(lhs.x, rhs.x) || !FloatEquals(lhs.y, rhs.y) || !FloatEquals(lhs.z, rhs.z);
|
||||
}
|
||||
|
||||
// Vector4 operators
|
||||
static constexpr Vector4 Vector4Zeros = { 0, 0, 0, 0 };
|
||||
static constexpr Vector4 Vector4Ones = { 1, 1, 1, 1 };
|
||||
static constexpr Vector4 Vector4UnitX = { 1, 0, 0, 0 };
|
||||
static constexpr Vector4 Vector4UnitY = { 0, 1, 0, 0 };
|
||||
static constexpr Vector4 Vector4UnitZ = { 0, 0, 1, 0 };
|
||||
static constexpr Vector4 Vector4UnitW = { 0, 0, 0, 1 };
|
||||
|
||||
inline Vector4 operator + (const Vector4& lhs, const Vector4& rhs)
|
||||
{
|
||||
return Vector4Add(lhs, rhs);
|
||||
}
|
||||
|
||||
inline const Vector4& operator += (Vector4& lhs, const Vector4& rhs)
|
||||
{
|
||||
lhs = Vector4Add(lhs, rhs);
|
||||
return lhs;
|
||||
}
|
||||
|
||||
inline Vector4 operator - (const Vector4& lhs, const Vector4& rhs)
|
||||
{
|
||||
return Vector4Subtract(lhs, rhs);
|
||||
}
|
||||
|
||||
inline const Vector4& operator -= (Vector4& lhs, const Vector4& rhs)
|
||||
{
|
||||
lhs = Vector4Subtract(lhs, rhs);
|
||||
return lhs;
|
||||
}
|
||||
|
||||
inline Vector4 operator * (const Vector4& lhs, const float& rhs)
|
||||
{
|
||||
return Vector4Scale(lhs, rhs);
|
||||
}
|
||||
|
||||
inline const Vector4& operator *= (Vector4& lhs, const float& rhs)
|
||||
{
|
||||
lhs = Vector4Scale(lhs, rhs);
|
||||
return lhs;
|
||||
}
|
||||
|
||||
inline Vector4 operator * (const Vector4& lhs, const Vector4& rhs)
|
||||
{
|
||||
return Vector4Multiply(lhs, rhs);
|
||||
}
|
||||
|
||||
inline const Vector4& operator *= (Vector4& lhs, const Vector4& rhs)
|
||||
{
|
||||
lhs = Vector4Multiply(lhs, rhs);
|
||||
return lhs;
|
||||
}
|
||||
|
||||
inline Vector4 operator / (const Vector4& lhs, const float& rhs)
|
||||
{
|
||||
return Vector4Scale(lhs, 1.0f / rhs);
|
||||
}
|
||||
|
||||
inline const Vector4& operator /= (Vector4& lhs, const float& rhs)
|
||||
{
|
||||
lhs = Vector4Scale(lhs, rhs);
|
||||
return lhs;
|
||||
}
|
||||
|
||||
inline Vector4 operator / (const Vector4& lhs, const Vector4& rhs)
|
||||
{
|
||||
return Vector4Divide(lhs, rhs);
|
||||
}
|
||||
|
||||
inline const Vector4& operator /= (Vector4& lhs, const Vector4& rhs)
|
||||
{
|
||||
lhs = Vector4Divide(lhs, rhs);
|
||||
return lhs;
|
||||
}
|
||||
|
||||
inline bool operator == (const Vector4& lhs, const Vector4& rhs)
|
||||
{
|
||||
return FloatEquals(lhs.x, rhs.x) && FloatEquals(lhs.y, rhs.y) && FloatEquals(lhs.z, rhs.z) && FloatEquals(lhs.w, rhs.w);
|
||||
}
|
||||
|
||||
inline bool operator != (const Vector4& lhs, const Vector4& rhs)
|
||||
{
|
||||
return !FloatEquals(lhs.x, rhs.x) || !FloatEquals(lhs.y, rhs.y) || !FloatEquals(lhs.z, rhs.z) || !FloatEquals(lhs.w, rhs.w);
|
||||
}
|
||||
|
||||
// Quaternion operators
|
||||
static constexpr Quaternion QuaternionZeros = { 0, 0, 0, 0 };
|
||||
static constexpr Quaternion QuaternionOnes = { 1, 1, 1, 1 };
|
||||
static constexpr Quaternion QuaternionUnitX = { 0, 0, 0, 1 };
|
||||
|
||||
inline Quaternion operator + (const Quaternion& lhs, const float& rhs)
|
||||
{
|
||||
return QuaternionAddValue(lhs, rhs);
|
||||
}
|
||||
|
||||
inline const Quaternion& operator += (Quaternion& lhs, const float& rhs)
|
||||
{
|
||||
lhs = QuaternionAddValue(lhs, rhs);
|
||||
return lhs;
|
||||
}
|
||||
|
||||
inline Quaternion operator - (const Quaternion& lhs, const float& rhs)
|
||||
{
|
||||
return QuaternionSubtractValue(lhs, rhs);
|
||||
}
|
||||
|
||||
inline const Quaternion& operator -= (Quaternion& lhs, const float& rhs)
|
||||
{
|
||||
lhs = QuaternionSubtractValue(lhs, rhs);
|
||||
return lhs;
|
||||
}
|
||||
|
||||
inline Quaternion operator * (const Quaternion& lhs, const Matrix& rhs)
|
||||
{
|
||||
return QuaternionTransform(lhs, rhs);
|
||||
}
|
||||
|
||||
inline const Quaternion& operator *= (Quaternion& lhs, const Matrix& rhs)
|
||||
{
|
||||
lhs = QuaternionTransform(lhs, rhs);
|
||||
return lhs;
|
||||
}
|
||||
|
||||
// Matrix operators
|
||||
inline Matrix operator + (const Matrix& lhs, const Matrix& rhs)
|
||||
{
|
||||
return MatrixAdd(lhs, rhs);
|
||||
}
|
||||
|
||||
inline const Matrix& operator += (Matrix& lhs, const Matrix& rhs)
|
||||
{
|
||||
lhs = MatrixAdd(lhs, rhs);
|
||||
return lhs;
|
||||
}
|
||||
|
||||
inline Matrix operator - (const Matrix& lhs, const Matrix& rhs)
|
||||
{
|
||||
return MatrixSubtract(lhs, rhs);
|
||||
}
|
||||
|
||||
inline const Matrix& operator -= (Matrix& lhs, const Matrix& rhs)
|
||||
{
|
||||
lhs = MatrixSubtract(lhs, rhs);
|
||||
return lhs;
|
||||
}
|
||||
|
||||
inline Matrix operator * (const Matrix& lhs, const Matrix& rhs)
|
||||
{
|
||||
return MatrixMultiply(lhs, rhs);
|
||||
}
|
||||
|
||||
inline const Matrix& operator *= (Matrix& lhs, const Matrix& rhs)
|
||||
{
|
||||
lhs = MatrixMultiply(lhs, rhs);
|
||||
return lhs;
|
||||
}
|
||||
//-------------------------------------------------------------------------------
|
||||
#endif // C++ operators
|
||||
|
||||
#endif // RAYMATH_H
|
||||
|
||||
Reference in New Issue
Block a user