1851 lines
36 KiB
C
1851 lines
36 KiB
C
#include "main.h"
|
|
#include "state.h"
|
|
#include "rmath.h"
|
|
#include "lua_core.h"
|
|
|
|
inline int imin( int a, int b ) {
|
|
return a < b ? a : b;
|
|
}
|
|
|
|
inline int imax( int a, int b ) {
|
|
return a > b ? a : b;
|
|
}
|
|
|
|
/*
|
|
## Math - Utils
|
|
*/
|
|
|
|
/*
|
|
> result = RL.Round( float value )
|
|
|
|
Round float value
|
|
|
|
- Success return float
|
|
*/
|
|
int lmathRound( lua_State* L ) {
|
|
float value = luaL_checknumber( L, 1 );
|
|
|
|
lua_pushnumber( L, round( value ) );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
> result = RL.Clamp( float value, float min, float max )
|
|
|
|
Clamp float value
|
|
|
|
- Success return float
|
|
*/
|
|
int lmathClamp( lua_State* L ) {
|
|
float value = luaL_checknumber( L, 1 );
|
|
float min = luaL_checknumber( L, 2 );
|
|
float max = luaL_checknumber( L, 3 );
|
|
|
|
lua_pushnumber( L, Clamp( value, min, max ) );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
> result = RL.Lerp( float a, float b, float amount )
|
|
|
|
Calculate linear interpolation between two floats
|
|
|
|
- Success return float
|
|
*/
|
|
int lmathLerp( lua_State* L ) {
|
|
float start = luaL_checknumber( L, 1 );
|
|
float end = luaL_checknumber( L, 2 );
|
|
float amount = luaL_checknumber( L, 3 );
|
|
|
|
lua_pushnumber( L, Lerp( start, end, amount ) );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
> result = RL.Normalize( float value, float a, float b )
|
|
|
|
Normalize input value within input range
|
|
|
|
- Success return float
|
|
*/
|
|
int lmathNormalize( lua_State* L ) {
|
|
float value = luaL_checknumber( L, 1 );
|
|
float start = luaL_checknumber( L, 2 );
|
|
float end = luaL_checknumber( L, 3 );
|
|
|
|
lua_pushnumber( L, Normalize( value, start, end ) );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
> result = RL.Remap( float value, float inputStart, float inputEnd, float outputStart, float outputEnd )
|
|
|
|
Remap input value within input range to output range
|
|
|
|
- Success return float
|
|
*/
|
|
int lmathRemap( lua_State* L ) {
|
|
float value = luaL_checknumber( L, 1 );
|
|
float inputStart = luaL_checknumber( L, 2 );
|
|
float inputEnd = luaL_checknumber( L, 3 );
|
|
float outputStart = luaL_checknumber( L, 4 );
|
|
float outputEnd = luaL_checknumber( L, 5 );
|
|
|
|
lua_pushnumber( L, Remap( value, inputStart, inputEnd, outputStart, outputEnd ) );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
> result = RL.Wrap( float value, float min, float max )
|
|
|
|
Wrap input value from min to max
|
|
|
|
- Success return float
|
|
*/
|
|
int lmathWrap( lua_State* L ) {
|
|
float value = luaL_checknumber( L, 1 );
|
|
float min = luaL_checknumber( L, 2 );
|
|
float max = luaL_checknumber( L, 3 );
|
|
|
|
lua_pushnumber( L, Wrap( value, min, max ) );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
> result = RL.FloatEquals( float x, float y )
|
|
|
|
Check whether two given floats are almost equal
|
|
|
|
- Success return int
|
|
*/
|
|
int lmathFloatEquals( lua_State* L ) {
|
|
float x = luaL_checknumber( L, 1 );
|
|
float y = luaL_checknumber( L, 2 );
|
|
|
|
lua_pushinteger( L, FloatEquals( x, y ) );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
## Math - Vector2
|
|
*/
|
|
|
|
/*
|
|
> result = RL.Vector2Zero()
|
|
|
|
Vector with components value 0.0f
|
|
|
|
- Success return Vector2
|
|
*/
|
|
int lmathVector2Zero( lua_State* L ) {
|
|
uluaPushVector2( L, Vector2Zero() );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
> result = RL.Vector2One()
|
|
|
|
Vector with components value 1.0f
|
|
|
|
- Success return Vector2
|
|
*/
|
|
int lmathVector2One( lua_State* L ) {
|
|
uluaPushVector2( L, Vector2One() );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
> result = RL.Vector2Add( Vector2 v1, Vector2 v2 )
|
|
|
|
Add two vectors (v1 + v2)
|
|
|
|
- Success return Vector2
|
|
*/
|
|
int lmathVector2Add( lua_State* L ) {
|
|
Vector2 v1 = uluaGetVector2( L, 1 );
|
|
Vector2 v2 = uluaGetVector2( L, 2 );
|
|
|
|
uluaPushVector2( L, Vector2Add( v1, v2 ) );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
> result = RL.Vector2AddValue( Vector2 v, float add )
|
|
|
|
Add vector and float value
|
|
|
|
- Success return Vector2
|
|
*/
|
|
int lmathVector2AddValue( lua_State* L ) {
|
|
Vector2 v = uluaGetVector2( L, 1 );
|
|
float add = luaL_checknumber( L, 2 );
|
|
|
|
uluaPushVector2( L, Vector2AddValue( v, add ) );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
> result = RL.Vector2Subtract( Vector2 v1, Vector2 v2 )
|
|
|
|
Subtract two vectors (v1 - v2)
|
|
|
|
- Success return Vector2
|
|
*/
|
|
int lmathVector2Subtract( lua_State* L ) {
|
|
Vector2 v1 = uluaGetVector2( L, 1 );
|
|
Vector2 v2 = uluaGetVector2( L, 2 );
|
|
|
|
uluaPushVector2( L, Vector2Subtract( v1, v2 ) );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
> result = RL.Vector2SubtractValue( Vector2 v, float sub )
|
|
|
|
Subtract vector by float value
|
|
|
|
- Success return Vector2
|
|
*/
|
|
int lmathVector2SubtractValue( lua_State* L ) {
|
|
Vector2 v = uluaGetVector2( L, 1 );
|
|
float sub = luaL_checknumber( L, 2 );
|
|
|
|
uluaPushVector2( L, Vector2SubtractValue( v, sub ) );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
> result = RL.Vector2Length( vector2 v )
|
|
|
|
Calculate vector length
|
|
|
|
- Success return float
|
|
*/
|
|
int lmathVector2Length( lua_State* L ) {
|
|
Vector2 v = uluaGetVector2( L, 1 );
|
|
|
|
lua_pushnumber( L, Vector2Length( v ) );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
> result = RL.Vector2LengthSqr( vector2 v )
|
|
|
|
Calculate vector square length
|
|
|
|
- Success return float
|
|
*/
|
|
int lmathVector2LengthSqr( lua_State* L ) {
|
|
Vector2 v = uluaGetVector2( L, 1 );
|
|
|
|
lua_pushnumber( L, Vector2LengthSqr( v ) );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
> result = RL.Vector2DotProduct( Vector2 v1, Vector2 v2 )
|
|
|
|
Calculate two vectors dot product
|
|
|
|
- Success return float
|
|
*/
|
|
int lmathVector2DotProduct( lua_State* L ) {
|
|
Vector2 v1 = uluaGetVector2( L, 1 );
|
|
Vector2 v2 = uluaGetVector2( L, 2 );
|
|
|
|
lua_pushnumber( L, Vector2DotProduct( v1, v2 ) );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
> result = RL.Vector2Distance( Vector2 v1, Vector2 v2 )
|
|
|
|
Calculate distance between two vectors
|
|
|
|
- Success return float
|
|
*/
|
|
int lmathVector2Distance( lua_State* L ) {
|
|
Vector2 v1 = uluaGetVector2( L, 1 );
|
|
Vector2 v2 = uluaGetVector2( L, 2 );
|
|
|
|
lua_pushnumber( L, Vector2Distance( v1, v2 ) );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
> result = RL.Vector2DistanceSqr( Vector2 v1, Vector2 v2 )
|
|
|
|
Calculate square distance between two vectors
|
|
|
|
- Success return float
|
|
*/
|
|
int lmathVector2DistanceSqr( lua_State* L ) {
|
|
Vector2 v1 = uluaGetVector2( L, 1 );
|
|
Vector2 v2 = uluaGetVector2( L, 2 );
|
|
|
|
lua_pushnumber( L, Vector2DistanceSqr( v1, v2 ) );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
> result = RL.Vector2Angle( Vector2 v1, Vector2 v2 )
|
|
|
|
Calculate angle between two vectors
|
|
NOTE: Angle is calculated from origin point (0, 0)
|
|
|
|
- Success return float
|
|
*/
|
|
int lmathVector2Angle( lua_State* L ) {
|
|
Vector2 v1 = uluaGetVector2( L, 1 );
|
|
Vector2 v2 = uluaGetVector2( L, 2 );
|
|
|
|
lua_pushnumber( L, Vector2Angle( v1, v2 ) );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
> result = RL.Vector2LineAngle( Vector2 a, Vector2 b )
|
|
|
|
Calculate angle defined by a two vectors line
|
|
NOTE: Parameters need to be normalized
|
|
Current implementation should be aligned with glm::angle
|
|
|
|
- Success return float
|
|
*/
|
|
int lmathVector2LineAngle( lua_State* L ) {
|
|
Vector2 start = uluaGetVector2( L, 1 );
|
|
Vector2 end = uluaGetVector2( L, 2 );
|
|
|
|
lua_pushnumber( L, Vector2LineAngle( start, end ) );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
> result = RL.Vector2Scale( Vector2 v, float scale )
|
|
|
|
Scale vector (multiply by value)
|
|
|
|
- Success return Vector2
|
|
*/
|
|
int lmathVector2Scale( lua_State* L ) {
|
|
Vector2 v = uluaGetVector2( L, 1 );
|
|
float scale = luaL_checknumber( L, 2 );
|
|
|
|
uluaPushVector2( L, Vector2Scale( v, scale ) );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
> result = RL.Vector2Multiply( Vector2 v1, Vector2 v2 )
|
|
|
|
Multiply vector by vector
|
|
|
|
- Success return Vector2
|
|
*/
|
|
int lmathVector2Multiply( lua_State* L ) {
|
|
Vector2 v1 = uluaGetVector2( L, 1 );
|
|
Vector2 v2 = uluaGetVector2( L, 2 );
|
|
|
|
uluaPushVector2( L, Vector2Multiply( v1, v2 ) );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
> result = RL.Vector2Negate( Vector2 v )
|
|
|
|
Negate vector
|
|
|
|
- Success return Vector2
|
|
*/
|
|
int lmathVector2Negate( lua_State* L ) {
|
|
Vector2 v = uluaGetVector2( L, 1 );
|
|
|
|
uluaPushVector2( L, Vector2Negate( v ) );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
> result = RL.Vector2Divide( Vector2 v1, Vector2 v2 )
|
|
|
|
Divide vector by vector
|
|
|
|
- Success return Vector2
|
|
*/
|
|
int lmathVector2Divide( lua_State* L ) {
|
|
Vector2 v1 = uluaGetVector2( L, 1 );
|
|
Vector2 v2 = uluaGetVector2( L, 2 );
|
|
|
|
uluaPushVector2( L, Vector2Divide( v1, v2 ) );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
> result = RL.Vector2Normalize( Vector2 v )
|
|
|
|
Normalize provided vector
|
|
|
|
- Success return Vector2
|
|
*/
|
|
int lmathVector2Normalize( lua_State* L ) {
|
|
Vector2 v = uluaGetVector2( L, 1 );
|
|
|
|
uluaPushVector2( L, Vector2Normalize( v ) );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
> result = RL.Vector2Transform( Vector2 v, Matrix mat )
|
|
|
|
Transforms a Vector2 by a given Matrix
|
|
|
|
- Success return Vector2
|
|
*/
|
|
int lmathVector2Transform( lua_State* L ) {
|
|
Vector2 v = uluaGetVector2( L, 1 );
|
|
Matrix mat = uluaGetMatrix( L, 2 );
|
|
|
|
uluaPushVector2( L, Vector2Transform( v, mat ) );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
> result = RL.Vector2Lerp( Vector2 v1, Vector2 v2, float amount )
|
|
|
|
Calculate linear interpolation between two vectors
|
|
|
|
- Success return Vector2
|
|
*/
|
|
int lmathVector2Lerp( lua_State* L ) {
|
|
Vector2 v1 = uluaGetVector2( L, 1 );
|
|
Vector2 v2 = uluaGetVector2( L, 2 );
|
|
float amount = luaL_checknumber( L, 3 );
|
|
|
|
uluaPushVector2( L, Vector2Lerp( v1, v2, amount ) );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
> result = RL.Vector2Reflect( Vector2 v, Vector2 normal )
|
|
|
|
Calculate reflected vector to normal
|
|
|
|
- Success return Vector2
|
|
*/
|
|
int lmathVector2Reflect( lua_State* L ) {
|
|
Vector2 v1 = uluaGetVector2( L, 1 );
|
|
Vector2 v2 = uluaGetVector2( L, 2 );
|
|
|
|
uluaPushVector2( L, Vector2Reflect( v1, v2 ) );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
> result = RL.Vector2Rotate( Vector2 v, float angle )
|
|
|
|
Rotate vector by angle
|
|
|
|
- Success return Vector2
|
|
*/
|
|
int lmathVector2Rotate( lua_State* L ) {
|
|
Vector2 v = uluaGetVector2( L, 1 );
|
|
float degs = luaL_checknumber( L, 2 );
|
|
|
|
uluaPushVector2( L, Vector2Rotate( v, degs ) );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
> result = RL.Vector2MoveTowards( Vector2 v, Vector2 target, float maxDistance )
|
|
|
|
Move Vector towards target
|
|
|
|
- Success return Vector2
|
|
*/
|
|
int lmathVector2MoveTowards( lua_State* L ) {
|
|
Vector2 v1 = uluaGetVector2( L, 1 );
|
|
Vector2 v2 = uluaGetVector2( L, 2 );
|
|
float maxDistance = luaL_checknumber( L, 3 );
|
|
|
|
uluaPushVector2( L, Vector2MoveTowards( v1, v2, maxDistance ) );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
> result = RL.Vector2Invert( Vector2 v )
|
|
|
|
Invert the given vector
|
|
|
|
- Success return Vector2
|
|
*/
|
|
int lmathVector2Invert( lua_State* L ) {
|
|
Vector2 v = uluaGetVector2( L, 1 );
|
|
|
|
uluaPushVector2( L, Vector2Invert( v ) );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
> result = RL.Vector2Clamp( Vector2 v, Vector2 min, Vector2 max )
|
|
|
|
Clamp the components of the vector between
|
|
min and max values specified by the given vectors
|
|
|
|
- Success return Vector2
|
|
*/
|
|
int lmathVector2Clamp( lua_State* L ) {
|
|
Vector2 v = uluaGetVector2( L, 1 );
|
|
Vector2 min = uluaGetVector2( L, 2 );
|
|
Vector2 max = uluaGetVector2( L, 3 );
|
|
|
|
uluaPushVector2( L, Vector2Clamp( v, min, max ) );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
> result = RL.Vector2ClampValue( Vector2 v, float min, float max )
|
|
|
|
Clamp the magnitude of the vector between two min and max values
|
|
|
|
- Success return Vector2
|
|
*/
|
|
int lmathVector2ClampValue( lua_State* L ) {
|
|
Vector2 v = uluaGetVector2( L, 1 );
|
|
float min = luaL_checknumber( L, 2 );
|
|
float max = luaL_checknumber( L, 3 );
|
|
|
|
uluaPushVector2( L, Vector2ClampValue( v, min, max ) );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
> result = RL.Vector2Equals( Vector2 v1, Vector2 v2 )
|
|
|
|
Check whether two given vectors are almost equal
|
|
|
|
- Success return int
|
|
*/
|
|
int lmathVector2Equals( lua_State* L ) {
|
|
Vector2 v1 = uluaGetVector2( L, 1 );
|
|
Vector2 v2 = uluaGetVector2( L, 2 );
|
|
|
|
lua_pushinteger( L, Vector2Equals( v1, v2 ) );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
## Math - Vector 3
|
|
*/
|
|
|
|
/*
|
|
> result = RL.Vector3Zero()
|
|
|
|
Vector with components value 0.0f
|
|
|
|
- Success return Vector3
|
|
*/
|
|
int lmathVector3Zero( lua_State* L ) {
|
|
uluaPushVector3( L, Vector3Zero() );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
> result = RL.Vector3One()
|
|
|
|
Vector with components value 1.0f
|
|
|
|
- Success return Vector3
|
|
*/
|
|
int lmathVector3One( lua_State* L ) {
|
|
uluaPushVector3( L, Vector3One() );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
> result = RL.Vector3Add( Vector3 v1, Vector3 v2 )
|
|
|
|
Add two vectors
|
|
|
|
- Success return Vector3
|
|
*/
|
|
int lmathVector3Add( lua_State* L ) {
|
|
Vector3 v1 = uluaGetVector3( L, 1 );
|
|
Vector3 v2 = uluaGetVector3( L, 2 );
|
|
|
|
uluaPushVector3( L, Vector3Add( v1, v2 ) );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
> result = RL.Vector3AddValue( Vector3 v, float add )
|
|
|
|
Add vector and float value
|
|
|
|
- Success return Vector3
|
|
*/
|
|
int lmathVector3AddValue( lua_State* L ) {
|
|
Vector3 v = uluaGetVector3( L, 1 );
|
|
float add = luaL_checknumber( L, 2 );
|
|
|
|
uluaPushVector3( L, Vector3AddValue( v, add ) );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
> result = RL.Vector3Subtract( Vector3 v1, Vector3 v2 )
|
|
|
|
Subtract two vectors
|
|
|
|
- Success return Vector3
|
|
*/
|
|
int lmathVector3Subtract( lua_State* L ) {
|
|
Vector3 v1 = uluaGetVector3( L, 1 );
|
|
Vector3 v2 = uluaGetVector3( L, 2 );
|
|
|
|
uluaPushVector3( L, Vector3Subtract( v1, v2 ) );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
> result = RL.Vector3SubtractValue( Vector3 v, float sub )
|
|
|
|
Subtract vector by float value
|
|
|
|
- Success return Vector3
|
|
*/
|
|
int lmathVector3SubtractValue( lua_State* L ) {
|
|
Vector3 v = uluaGetVector3( L, 1 );
|
|
float sub = luaL_checknumber( L, 2 );
|
|
|
|
uluaPushVector3( L, Vector3SubtractValue( v, sub ) );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
> result = RL.Vector3Scale( Vector3 v, float scalar )
|
|
|
|
Multiply vector by scalar
|
|
|
|
- Success return Vector3
|
|
*/
|
|
int lmathVector3Scale( lua_State* L ) {
|
|
Vector3 v = uluaGetVector3( L, 1 );
|
|
float scalar = luaL_checknumber( L, 2 );
|
|
|
|
uluaPushVector3( L, Vector3Scale( v, scalar ) );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
> result = RL.Vector3Multiply( Vector3 v1, Vector3 v2 )
|
|
|
|
Multiply vector by vector
|
|
|
|
- Success return Vector3
|
|
*/
|
|
int lmathVector3Multiply( lua_State* L ) {
|
|
Vector3 v1 = uluaGetVector3( L, 1 );
|
|
Vector3 v2 = uluaGetVector3( L, 2 );
|
|
|
|
uluaPushVector3( L, Vector3Multiply( v1, v2 ) );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
> result = RL.Vector3CrossProduct( Vector3 v1, Vector3 v2 )
|
|
|
|
Calculate two vectors cross product
|
|
|
|
- Success return Vector3
|
|
*/
|
|
int lmathVector3CrossProduct( lua_State* L ) {
|
|
Vector3 v1 = uluaGetVector3( L, 1 );
|
|
Vector3 v2 = uluaGetVector3( L, 2 );
|
|
|
|
uluaPushVector3( L, Vector3CrossProduct( v1, v2 ) );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
> result = RL.Vector3Perpendicular( Vector3 v )
|
|
|
|
Calculate one vector perpendicular vector
|
|
|
|
- Success return Vector3
|
|
*/
|
|
int lmathVector3Perpendicular( lua_State* L ) {
|
|
Vector3 v = uluaGetVector3( L, 1 );
|
|
|
|
uluaPushVector3( L, Vector3Perpendicular( v ) );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
> result = RL.Vector3Length( Vector3 v )
|
|
|
|
Calculate vector length
|
|
|
|
- Success return float
|
|
*/
|
|
int lmathVector3Length( lua_State* L ) {
|
|
Vector3 v = uluaGetVector3( L, 1 );
|
|
|
|
lua_pushnumber( L, Vector3Length( v ) );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
> result = RL.Vector3LengthSqr( Vector3 v )
|
|
|
|
Calculate vector square length
|
|
|
|
- Success return float
|
|
*/
|
|
int lmathVector3LengthSqr( lua_State* L ) {
|
|
Vector3 v = uluaGetVector3( L, 1 );
|
|
|
|
lua_pushnumber( L, Vector3LengthSqr( v ) );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
> result = RL.Vector3DotProduct( Vector3 v1, Vector3 v2 )
|
|
|
|
Calculate two vectors dot product
|
|
|
|
- Success return float
|
|
*/
|
|
int lmathVector3DotProduct( lua_State* L ) {
|
|
Vector3 v1 = uluaGetVector3( L, 1 );
|
|
Vector3 v2 = uluaGetVector3( L, 2 );
|
|
|
|
lua_pushnumber( L, Vector3DotProduct( v1, v2 ) );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
> result = RL.Vector3Distance( Vector3 v1, Vector3 v2 )
|
|
|
|
Calculate distance between two vectors
|
|
|
|
- Success return float
|
|
*/
|
|
int lmathVector3Distance( lua_State* L ) {
|
|
Vector3 v1 = uluaGetVector3( L, 1 );
|
|
Vector3 v2 = uluaGetVector3( L, 2 );
|
|
|
|
lua_pushnumber( L, Vector3Distance( v1, v2 ) );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
> result = RL.Vector3DistanceSqr( Vector3 v1, Vector3 v2 )
|
|
|
|
Calculate square distance between two vectors
|
|
|
|
- Success return float
|
|
*/
|
|
int lmathVector3DistanceSqr( lua_State* L ) {
|
|
Vector3 v1 = uluaGetVector3( L, 1 );
|
|
Vector3 v2 = uluaGetVector3( L, 2 );
|
|
|
|
lua_pushnumber( L, Vector3DistanceSqr( v1, v2 ) );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
> result = RL.Vector3Angle( Vector3 v1, Vector3 v2 )
|
|
|
|
Calculate angle between two vectors
|
|
|
|
- Success return float
|
|
*/
|
|
int lmathVector3Angle( lua_State* L ) {
|
|
Vector3 v1 = uluaGetVector3( L, 1 );
|
|
Vector3 v2 = uluaGetVector3( L, 2 );
|
|
|
|
lua_pushnumber( L, Vector3Angle( v1, v2 ) );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
> result = RL.Vector3Negate( Vector3 v )
|
|
|
|
Negate provided vector (invert direction)
|
|
|
|
- Success return Vector3
|
|
*/
|
|
int lmathVector3Negate( lua_State* L ) {
|
|
Vector3 v = uluaGetVector3( L, 1 );
|
|
|
|
uluaPushVector3( L, Vector3Negate( v ) );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
> result = RL.Vector3Divide( Vector3 v1, Vector3 v2 )
|
|
|
|
Divide vector by vector
|
|
|
|
- Success return Vector3
|
|
*/
|
|
int lmathVector3Divide( lua_State* L ) {
|
|
Vector3 v1 = uluaGetVector3( L, 1 );
|
|
Vector3 v2 = uluaGetVector3( L, 2 );
|
|
|
|
uluaPushVector3( L, Vector3Divide( v1, v2 ) );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
> result = RL.Vector3Normalize( Vector3 v )
|
|
|
|
Normalize provided vector
|
|
|
|
- Success return Vector3
|
|
*/
|
|
int lmathVector3Normalize( lua_State* L ) {
|
|
Vector3 v = uluaGetVector3( L, 1 );
|
|
|
|
uluaPushVector3( L, Vector3Normalize( v ) );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
> result = RL.Vector3Project( Vector3 v1, Vector3 v2 )
|
|
|
|
Calculate the projection of the vector v1 on to v2
|
|
|
|
- Success return Vector3
|
|
*/
|
|
int lmathVector3Project( lua_State* L ) {
|
|
Vector3 v1 = uluaGetVector3( L, 1 );
|
|
Vector3 v2 = uluaGetVector3( L, 2 );
|
|
|
|
uluaPushVector3( L, Vector3Project( v1, v2 ) );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
> result = RL.Vector3Reject( Vector3 v1, Vector3 v2 )
|
|
|
|
Calculate the rejection of the vector v1 on to v2
|
|
|
|
- Success return Vector3
|
|
*/
|
|
int lmathVector3Reject( lua_State* L ) {
|
|
Vector3 v1 = uluaGetVector3( L, 1 );
|
|
Vector3 v2 = uluaGetVector3( L, 2 );
|
|
|
|
uluaPushVector3( L, Vector3Reject( v1, v2 ) );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
> v1, v2 = RL.Vector3OrthoNormalize( Vector3 v1, Vector3 v2 )
|
|
|
|
Orthonormalize provided vectors. Makes vectors normalized and orthogonal to each other.
|
|
Gram-Schmidt function implementation
|
|
|
|
- Success return Vector3, Vector3
|
|
*/
|
|
int lmathVector3OrthoNormalize( lua_State* L ) {
|
|
Vector3 v1 = uluaGetVector3( L, 1 );
|
|
Vector3 v2 = uluaGetVector3( L, 2 );
|
|
|
|
Vector3OrthoNormalize( &v1, &v2 );
|
|
|
|
uluaPushVector3( L, v1 );
|
|
uluaPushVector3( L, v2 );
|
|
|
|
return 2;
|
|
}
|
|
|
|
/*
|
|
> result = RL.Vector3Transform( Vector3 v, Matrix mat )
|
|
|
|
Transforms a Vector3 by a given Matrix
|
|
|
|
- Success return Vector3
|
|
*/
|
|
int lmathVector3Transform( lua_State* L ) {
|
|
Vector3 v = uluaGetVector3( L, 1 );
|
|
Matrix mat = uluaGetMatrix( L, 2 );
|
|
|
|
uluaPushVector3( L, Vector3Transform( v, mat ) );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
> result = RL.Vector3RotateByQuaternion( Vector3 v, Quaternion q )
|
|
|
|
Transform a vector by quaternion rotation
|
|
|
|
- Success return Vector3
|
|
*/
|
|
int lmathVector3RotateByQuaternion( lua_State* L ) {
|
|
Vector3 v = uluaGetVector3( L, 1 );
|
|
Quaternion q = uluaGetQuaternion( L, 2 );
|
|
|
|
uluaPushVector3( L, Vector3RotateByQuaternion( v, q ) );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
> result = RL.Vector3RotateByAxisAngle( Vector3 v, Vector3 axis, float angle )
|
|
|
|
Rotates a vector around an axis
|
|
|
|
- Success return Vector3
|
|
*/
|
|
int lmathVector3RotateByAxisAngle( lua_State* L ) {
|
|
Vector3 v = uluaGetVector3( L, 1 );
|
|
Vector3 axis = uluaGetVector3( L, 2 );
|
|
float angle = luaL_checknumber( L, 3 );
|
|
|
|
uluaPushVector3( L, Vector3RotateByAxisAngle( v, axis, angle ) );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
> result = RL.Vector3Lerp( Vector3 v1, Vector3 v2, float amount )
|
|
|
|
Calculate linear interpolation between two vectors
|
|
|
|
- Success return Vector3
|
|
*/
|
|
int lmathVector3Lerp( lua_State* L ) {
|
|
Vector3 v1 = uluaGetVector3( L, 1 );
|
|
Vector3 v2 = uluaGetVector3( L, 2 );
|
|
float amount = luaL_checknumber( L, 3 );
|
|
|
|
uluaPushVector3( L, Vector3Lerp( v1, v2, amount ) );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
> result = RL.Vector3Reflect( Vector3 v, Vector3 normal )
|
|
|
|
Calculate reflected vector to normal
|
|
|
|
- Success return Vector3
|
|
*/
|
|
int lmathVector3Reflect( lua_State* L ) {
|
|
Vector3 v = uluaGetVector3( L, 1 );
|
|
Vector3 normal = uluaGetVector3( L, 2 );
|
|
|
|
uluaPushVector3( L, Vector3Reflect( v, normal ) );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
> result = RL.Vector3Min( Vector3 v1, Vector3 v2 )
|
|
|
|
Get min value for each pair of components
|
|
|
|
- Success return Vector3
|
|
*/
|
|
int lmathVector3Min( lua_State* L ) {
|
|
Vector3 v1 = uluaGetVector3( L, 1 );
|
|
Vector3 v2 = uluaGetVector3( L, 2 );
|
|
|
|
uluaPushVector3( L, Vector3Min( v1, v2 ) );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
> result = RL.Vector3Max( Vector3 v1, Vector3 v2 )
|
|
|
|
Get max value for each pair of components
|
|
|
|
- Success return Vector3
|
|
*/
|
|
int lmathVector3Max( lua_State* L ) {
|
|
Vector3 v1 = uluaGetVector3( L, 1 );
|
|
Vector3 v2 = uluaGetVector3( L, 2 );
|
|
|
|
uluaPushVector3( L, Vector3Max( v1, v2 ) );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
> result = RL.Vector3Barycenter( Vector3 p, Vector3 a, Vector3 b, Vector3 c )
|
|
|
|
Compute barycenter coordinates (u, v, w) for point p with respect to triangle (a, b, c)
|
|
NOTE: Assumes P is on the plane of the triangle
|
|
|
|
- Success return Vector3
|
|
*/
|
|
int lmathVector3Barycenter( lua_State* L ) {
|
|
Vector3 p = uluaGetVector3( L, 1 );
|
|
Vector3 a = uluaGetVector3( L, 2 );
|
|
Vector3 b = uluaGetVector3( L, 3 );
|
|
Vector3 c = uluaGetVector3( L, 4 );
|
|
|
|
uluaPushVector3( L, Vector3Barycenter( p, a, b, c ) );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
> result = RL.Vector3Unproject( Vector3 source, Matrix projection, Matrix view )
|
|
|
|
Projects a Vector3 from screen space into object space
|
|
NOTE: We are avoiding calling other raymath functions despite available
|
|
|
|
- Success return Vector3
|
|
*/
|
|
int lmathVector3Unproject( lua_State* L ) {
|
|
Vector3 source = uluaGetVector3( L, 1 );
|
|
Matrix projection = uluaGetMatrix( L, 2 );
|
|
Matrix view = uluaGetMatrix( L, 3 );
|
|
|
|
uluaPushVector3( L, Vector3Unproject( source, projection, view ) );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
> result = RL.Vector3Invert( Vector3 v )
|
|
|
|
Invert the given vector
|
|
|
|
- Success return Vector3
|
|
*/
|
|
int lmathVector3Invert( lua_State* L ) {
|
|
Vector3 v = uluaGetVector3( L, 1 );
|
|
|
|
uluaPushVector3( L, Vector3Invert( v ) );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
> result = RL.Vector3Clamp( Vector3 v, Vector3 min, Vector3 max )
|
|
|
|
Clamp the components of the vector between
|
|
min and max values specified by the given vectors
|
|
|
|
- Success return Vector3
|
|
*/
|
|
int lmathVector3Clamp( lua_State* L ) {
|
|
Vector3 v = uluaGetVector3( L, 1 );
|
|
Vector3 min = uluaGetVector3( L, 2 );
|
|
Vector3 max = uluaGetVector3( L, 3 );
|
|
|
|
uluaPushVector3( L, Vector3Clamp( v, min, max ) );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
> result = RL.Vector3ClampValue( Vector3 v, float min, float max )
|
|
|
|
Clamp the magnitude of the vector between two values
|
|
|
|
- Success return Vector3
|
|
*/
|
|
int lmathVector3ClampValue( lua_State* L ) {
|
|
Vector3 v = uluaGetVector3( L, 1 );
|
|
float min = luaL_checknumber( L, 2 );
|
|
float max = luaL_checknumber( L, 3 );
|
|
|
|
uluaPushVector3( L, Vector3ClampValue( v, min, max ) );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
> result = RL.Vector3Equals( Vector3 v1, Vector3 v2 )
|
|
|
|
Check whether two given vectors are almost equal
|
|
|
|
- Success return int
|
|
*/
|
|
int lmathVector3Equals( lua_State* L ) {
|
|
Vector3 v1 = uluaGetVector3( L, 1 );
|
|
Vector3 v2 = uluaGetVector3( L, 2 );
|
|
|
|
lua_pushinteger( L, Vector3Equals( v1, v2 ) );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
> result = RL.Vector3Refract( Vector3 v, Vector3 n, float r )
|
|
|
|
Compute the direction of a refracted ray where v specifies the
|
|
normalized direction of the incoming ray, n specifies the
|
|
normalized normal vector of the interface of two optical media,
|
|
and r specifies the ratio of the refractive index of the medium
|
|
from where the ray comes to the refractive index of the medium
|
|
on the other side of the surface
|
|
|
|
- Success return Vector3
|
|
*/
|
|
int lmathVector3Refract( lua_State* L ) {
|
|
Vector3 v = uluaGetVector3( L, 1 );
|
|
Vector3 n = uluaGetVector3( L, 2 );
|
|
float r = luaL_checknumber( L, 3 );
|
|
|
|
uluaPushVector3( L, Vector3Refract( v, n, r ) );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
## Math - Matrix
|
|
*/
|
|
|
|
/*
|
|
> result = RL.MatrixDeterminant( Matrix mat )
|
|
|
|
Compute matrix determinant
|
|
|
|
- Success return float
|
|
*/
|
|
int lmathMatrixDeterminant( lua_State* L ) {
|
|
Matrix mat = uluaGetMatrix( L, 1 );
|
|
|
|
lua_pushnumber( L, MatrixDeterminant( mat ) );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
> result = RL.MatrixTrace( Matrix mat )
|
|
|
|
Get the trace of the matrix (sum of the values along the diagonal)
|
|
|
|
- Success return float
|
|
*/
|
|
int lmathMatrixTrace( lua_State* L ) {
|
|
Matrix mat = uluaGetMatrix( L, 1 );
|
|
|
|
lua_pushnumber( L, MatrixTrace( mat ) );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
> result = RL.MatrixTranspose( Matrix mat )
|
|
|
|
Transposes provided matrix
|
|
|
|
- Success return Matrix
|
|
*/
|
|
int lmathMatrixTranspose( lua_State* L ) {
|
|
Matrix mat = uluaGetMatrix( L, 1 );
|
|
|
|
uluaPushMatrix( L, MatrixTranspose( mat ) );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
> result = RL.MatrixInvert( Matrix mat )
|
|
|
|
Invert provided matrix
|
|
|
|
- Success return Matrix
|
|
*/
|
|
int lmathMatrixInvert( lua_State* L ) {
|
|
Matrix mat = uluaGetMatrix( L, 1 );
|
|
|
|
uluaPushMatrix( L, MatrixInvert( mat ) );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
> result = RL.MatrixIdentity()
|
|
|
|
Get identity matrix
|
|
|
|
- Success return Matrix
|
|
*/
|
|
int lmathMatrixIdentity( lua_State* L ) {
|
|
uluaPushMatrix( L, MatrixIdentity() );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
> result = RL.MatrixAdd( Matrix left, Matrix right )
|
|
|
|
Add two matrices
|
|
|
|
- Success return Matrix
|
|
*/
|
|
int lmathMatrixAdd( lua_State* L ) {
|
|
Matrix mat1 = uluaGetMatrix( L, 1 );
|
|
Matrix mat2 = uluaGetMatrix( L, 2 );
|
|
|
|
uluaPushMatrix( L, MatrixAdd( mat1, mat2 ) );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
> result = RL.MatrixSubtract( Matrix left, Matrix right )
|
|
|
|
Subtract two matrices (left - right)
|
|
|
|
- Success return Matrix
|
|
*/
|
|
int lmathMatrixSubtract( lua_State* L ) {
|
|
Matrix mat1 = uluaGetMatrix( L, 1 );
|
|
Matrix mat2 = uluaGetMatrix( L, 2 );
|
|
|
|
uluaPushMatrix( L, MatrixSubtract( mat1, mat2 ) );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
> result = RL.MatrixMultiply( Matrix left, Matrix right )
|
|
|
|
Get two matrix multiplication
|
|
|
|
- Success return Matrix
|
|
*/
|
|
int lmathMatrixMultiply( lua_State* L ) {
|
|
Matrix mat1 = uluaGetMatrix( L, 1 );
|
|
Matrix mat2 = uluaGetMatrix( L, 2 );
|
|
|
|
uluaPushMatrix( L, MatrixMultiply( mat1, mat2 ) );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
> result = RL.MatrixTranslate( Vector3 translate )
|
|
|
|
Get translation matrix
|
|
|
|
- Success return Matrix
|
|
*/
|
|
int lmathMatrixTranslate( lua_State* L ) {
|
|
Vector3 v = uluaGetVector3( L, 1 );
|
|
|
|
uluaPushMatrix( L, MatrixTranslate( v.x, v.y, v.z ) );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
> result = RL.MatrixRotate( Vector3 axis, float angle )
|
|
|
|
Create rotation matrix from axis and angle. NOTE: Angle should be provided in radians
|
|
|
|
- Success return Matrix
|
|
*/
|
|
int lmathMatrixRotate( lua_State* L ) {
|
|
Vector3 axis = uluaGetVector3( L, 1 );
|
|
float angle = luaL_checknumber( L, 2 );
|
|
|
|
uluaPushMatrix( L, MatrixRotate( axis, angle ) );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
> result = RL.MatrixRotateX( float angle )
|
|
|
|
Get x-rotation matrix (angle in radians)
|
|
|
|
- Success return Matrix
|
|
*/
|
|
int lmathMatrixRotateX( lua_State* L ) {
|
|
float angle = luaL_checknumber( L, 1 );
|
|
|
|
uluaPushMatrix( L, MatrixRotateX( angle ) );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
> result = RL.MatrixRotateY( float angle )
|
|
|
|
Get y-rotation matrix (angle in radians)
|
|
|
|
- Success return Matrix
|
|
*/
|
|
int lmathMatrixRotateY( lua_State* L ) {
|
|
float angle = luaL_checknumber( L, 1 );
|
|
|
|
uluaPushMatrix( L, MatrixRotateY( angle ) );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
> result = RL.MatrixRotateZ( float angle )
|
|
|
|
Get z-rotation matrix (angle in radians)
|
|
|
|
- Success return Matrix
|
|
*/
|
|
int lmathMatrixRotateZ( lua_State* L ) {
|
|
float angle = luaL_checknumber( L, 1 );
|
|
|
|
uluaPushMatrix( L, MatrixRotateZ( angle ) );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
> result = RL.MatrixRotateXYZ( Vector3 angles )
|
|
|
|
Get xyz-rotation matrix (angles in radians)
|
|
|
|
- Success return Matrix
|
|
*/
|
|
int lmathMatrixRotateXYZ( lua_State* L ) {
|
|
Vector3 angle = uluaGetVector3( L, 1 );
|
|
|
|
uluaPushMatrix( L, MatrixRotateXYZ( angle ) );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
> result = RL.MatrixRotateZYX( Vector3 angles )
|
|
|
|
Get zyx-rotation matrix (angles in radians)
|
|
|
|
- Success return Matrix
|
|
*/
|
|
int lmathMatrixRotateZYX( lua_State* L ) {
|
|
Vector3 angle = uluaGetVector3( L, 1 );
|
|
|
|
uluaPushMatrix( L, MatrixRotateZYX( angle ) );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
> result = RL.MatrixScale( Vector3 scale )
|
|
|
|
Get scaling matrix
|
|
|
|
- Success return Matrix
|
|
*/
|
|
int lmathMatrixScale( lua_State* L ) {
|
|
Vector3 v = uluaGetVector3( L, 1 );
|
|
|
|
uluaPushMatrix( L, MatrixScale( v.x, v.y, v.z ) );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
> result = RL.MatrixFrustum( double left, double right, double bottom, double top, double near, double far )
|
|
|
|
Get perspective projection matrix
|
|
|
|
- Success return Matrix
|
|
*/
|
|
int lmathMatrixFrustum( lua_State* L ) {
|
|
float left = luaL_checknumber( L, 1 );
|
|
float right = luaL_checknumber( L, 2);
|
|
float bottom = luaL_checknumber( L, 3 );
|
|
float top = luaL_checknumber( L, 4 );
|
|
float near = luaL_checknumber( L, 5 );
|
|
float far = luaL_checknumber( L, 6 );
|
|
|
|
uluaPushMatrix( L, MatrixFrustum( left, right, bottom, top, near, far ) );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
> result = RL.MatrixPerspective( double fovy, double aspect, double near, double far )
|
|
|
|
Get perspective projection matrix
|
|
|
|
- Success return Matrix
|
|
*/
|
|
int lmathMatrixPerspective( lua_State* L ) {
|
|
float fovy = luaL_checknumber( L, 1 );
|
|
float aspect = luaL_checknumber( L, 2 );
|
|
float near = luaL_checknumber( L, 3 );
|
|
float far = luaL_checknumber( L, 4 );
|
|
|
|
uluaPushMatrix( L, MatrixPerspective( fovy, aspect, near, far ) );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
> result = RL.MatrixOrtho( double left, double right, double bottom, double top, double near, double far )
|
|
|
|
Get orthographic projection matrix
|
|
|
|
- Success return Matrix
|
|
*/
|
|
int lmathMatrixOrtho( lua_State* L ) {
|
|
float left = luaL_checknumber( L, 1 );
|
|
float right = luaL_checknumber( L, 2 );
|
|
float bottom = luaL_checknumber( L, 3 );
|
|
float top = luaL_checknumber( L, 4 );
|
|
float near = luaL_checknumber( L, 5 );
|
|
float far = luaL_checknumber( L, 6 );
|
|
|
|
uluaPushMatrix( L, MatrixOrtho( left, right, bottom, top, near, far ) );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
> result = RL.MatrixLookAt( Vector3 eye, Vector3 target, Vector3 up )
|
|
|
|
Get camera look-at matrix (View matrix)
|
|
|
|
- Success return Matrix
|
|
*/
|
|
int lmathMatrixLookAt( lua_State* L ) {
|
|
Vector3 eye = uluaGetVector3( L, 1 );
|
|
Vector3 target = uluaGetVector3( L, 2 );
|
|
Vector3 up = uluaGetVector3( L, 3 );
|
|
|
|
uluaPushMatrix( L, MatrixLookAt( eye, target, up ) );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
## Math - Quaternion
|
|
*/
|
|
|
|
/*
|
|
> result = RL.QuaternionAdd( Quaternion q1, Quaternion q2 )
|
|
|
|
Add two quaternions
|
|
|
|
- Success return Quaternion
|
|
*/
|
|
int lmathQuaternionAdd( lua_State* L ) {
|
|
Quaternion q1 = uluaGetQuaternion( L, 1 );
|
|
Quaternion q2 = uluaGetQuaternion( L, 2 );
|
|
|
|
uluaPushQuaternion( L, QuaternionAdd( q1, q2 ) );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
> result = RL.QuaternionAddValue( Quaternion q, float add )
|
|
|
|
Add quaternion and float value
|
|
|
|
- Success return Quaternion
|
|
*/
|
|
int lmathQuaternionAddValue( lua_State* L ) {
|
|
Quaternion q = uluaGetQuaternion( L, 1 );
|
|
float add = luaL_checknumber( L, 2 );
|
|
|
|
uluaPushQuaternion( L, QuaternionAddValue( q, add ) );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
> result = RL.QuaternionSubtract( Quaternion q1, Quaternion q2 )
|
|
|
|
Subtract two quaternions
|
|
|
|
- Success return Quaternion
|
|
*/
|
|
int lmathQuaternionSubtract( lua_State* L ) {
|
|
Quaternion q1 = uluaGetQuaternion( L, 1 );
|
|
Quaternion q2 = uluaGetQuaternion( L, 2 );
|
|
|
|
uluaPushQuaternion( L, QuaternionSubtract( q1, q2 ) );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
> result = RL.QuaternionSubtractValue( Quaternion q, float sub )
|
|
|
|
Subtract quaternion and float value
|
|
|
|
- Success return Quaternion
|
|
*/
|
|
int lmathQuaternionSubtractValue( lua_State* L ) {
|
|
Quaternion q = uluaGetQuaternion( L, 1 );
|
|
float sub = luaL_checknumber( L, 2 );
|
|
|
|
uluaPushQuaternion( L, QuaternionSubtractValue( q, sub ) );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
> result = RL.QuaternionIdentity()
|
|
|
|
Get identity quaternion
|
|
|
|
- Success return Quaternion
|
|
*/
|
|
int lmathQuaternionIdentity( lua_State* L ) {
|
|
uluaPushQuaternion( L, QuaternionIdentity() );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
> result = RL.QuaternionLength( Quaternion q )
|
|
|
|
Computes the length of a quaternion
|
|
|
|
- Success return float
|
|
*/
|
|
int lmathQuaternionLength( lua_State* L ) {
|
|
Quaternion q = uluaGetQuaternion( L, 1 );
|
|
|
|
lua_pushnumber( L, QuaternionLength( q ) );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
> result = RL.QuaternionNormalize( Quaternion q )
|
|
|
|
Normalize provided quaternion
|
|
|
|
- Success return Quaternion
|
|
*/
|
|
int lmathQuaternionNormalize( lua_State* L ) {
|
|
Quaternion q = uluaGetQuaternion( L, 1 );
|
|
|
|
uluaPushQuaternion( L, QuaternionNormalize( q ) );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
> result = RL.QuaternionInvert( Quaternion q )
|
|
|
|
Invert provided quaternion
|
|
|
|
- Success return Quaternion
|
|
*/
|
|
int lmathQuaternionInvert( lua_State* L ) {
|
|
Quaternion q = uluaGetQuaternion( L, 1 );
|
|
|
|
uluaPushQuaternion( L, QuaternionInvert( q ) );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
> result = RL.QuaternionMultiply( Quaternion q1, Quaternion q2 )
|
|
|
|
Calculate two quaternion multiplication
|
|
|
|
- Success return Quaternion
|
|
*/
|
|
int lmathQuaternionMultiply( lua_State* L ) {
|
|
Quaternion q1 = uluaGetQuaternion( L, 1 );
|
|
Quaternion q2 = uluaGetQuaternion( L, 2 );
|
|
|
|
uluaPushQuaternion( L, QuaternionMultiply( q1, q2 ) );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
> result = RL.QuaternionScale( Quaternion q, float mul )
|
|
|
|
Scale quaternion by float value
|
|
|
|
- Success return Quaternion
|
|
*/
|
|
int lmathQuaternionScale( lua_State* L ) {
|
|
Quaternion q = uluaGetQuaternion( L, 1 );
|
|
float mul = luaL_checknumber( L, 2 );
|
|
|
|
uluaPushQuaternion( L, QuaternionScale( q, mul ) );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
> result = RL.QuaternionDivide( Quaternion q1, Quaternion q2 )
|
|
|
|
Divide two quaternions
|
|
|
|
- Success return Quaternion
|
|
*/
|
|
int lmathQuaternionDivide( lua_State* L ) {
|
|
Quaternion q1 = uluaGetQuaternion( L, 1 );
|
|
Quaternion q2 = uluaGetQuaternion( L, 2 );
|
|
|
|
uluaPushQuaternion( L, QuaternionDivide( q1, q2 ) );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
> result = RL.QuaternionLerp( Quaternion q1, Quaternion q2, float amount )
|
|
|
|
Calculate linear interpolation between two quaternions
|
|
|
|
- Success return Quaternion
|
|
*/
|
|
int lmathQuaternionLerp( lua_State* L ) {
|
|
Quaternion q1 = uluaGetQuaternion( L, 1 );
|
|
Quaternion q2 = uluaGetQuaternion( L, 2 );
|
|
float amount = luaL_checknumber( L, 3 );
|
|
|
|
uluaPushQuaternion( L, QuaternionLerp( q1, q2, amount ) );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
> result = RL.QuaternionNlerp( Quaternion q1, Quaternion q2, float amount )
|
|
|
|
Calculate slerp-optimized interpolation between two quaternions
|
|
|
|
- Success return Quaternion
|
|
*/
|
|
int lmathQuaternionNlerp( lua_State* L ) {
|
|
Quaternion q1 = uluaGetQuaternion( L, 1 );
|
|
Quaternion q2 = uluaGetQuaternion( L, 2 );
|
|
float amount = luaL_checknumber( L, 3 );
|
|
|
|
uluaPushQuaternion( L, QuaternionNlerp( q1, q2, amount ) );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
> result = RL.QuaternionSlerp( Quaternion q1, Quaternion q2, float amount )
|
|
|
|
Calculates spherical linear interpolation between two quaternions
|
|
|
|
- Success return Quaternion
|
|
*/
|
|
int lmathQuaternionSlerp( lua_State* L ) {
|
|
Quaternion q1 = uluaGetQuaternion( L, 1 );
|
|
Quaternion q2 = uluaGetQuaternion( L, 2 );
|
|
float amount = luaL_checknumber( L, 3 );
|
|
|
|
uluaPushQuaternion( L, QuaternionSlerp( q1, q2, amount ) );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
> result = RL.QuaternionFromVector3ToVector3( Vector3 from, Vector3 to )
|
|
|
|
Calculate quaternion based on the rotation from one vector to another
|
|
|
|
- Success return Quaternion
|
|
*/
|
|
int lmathQuaternionFromVector3ToVector3( lua_State* L ) {
|
|
Vector3 from = uluaGetVector3( L, 1 );
|
|
Vector3 to = uluaGetVector3( L, 2 );
|
|
|
|
uluaPushQuaternion( L, QuaternionFromVector3ToVector3( from, to ) );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
> result = RL.QuaternionFromMatrix( Matrix mat )
|
|
|
|
Get a quaternion for a given rotation matrix
|
|
|
|
- Success return Quaternion
|
|
*/
|
|
int lmathQuaternionFromMatrix( lua_State* L ) {
|
|
Matrix mat = uluaGetMatrix( L, 1 );
|
|
|
|
uluaPushQuaternion( L, QuaternionFromMatrix( mat ) );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
> result = RL.QuaternionToMatrix( Quaternion q )
|
|
|
|
Get a quaternion for a given rotation matrix
|
|
|
|
- Success return Matrix
|
|
*/
|
|
int lmathQuaternionToMatrix( lua_State* L ) {
|
|
Quaternion q = uluaGetQuaternion( L, 1 );
|
|
|
|
uluaPushMatrix( L, QuaternionToMatrix( q ) );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
> result = RL.QuaternionFromAxisAngle( Vector3 axis, float angle )
|
|
|
|
Get rotation quaternion for an angle and axis
|
|
NOTE: angle must be provided in radians
|
|
|
|
- Success return Quaternion
|
|
*/
|
|
int lmathQuaternionFromAxisAngle( lua_State* L ) {
|
|
Vector3 axis = uluaGetVector3( L, 1 );
|
|
float angle = luaL_checknumber( L, 2 );
|
|
|
|
uluaPushQuaternion( L, QuaternionFromAxisAngle( axis, angle ) );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
> axis, angle = RL.QuaternionToAxisAngle( Quaternion q )
|
|
|
|
Get the rotation angle and axis for a given quaternion
|
|
|
|
- Success return Vector3, float
|
|
*/
|
|
int lmathQuaternionToAxisAngle( lua_State* L ) {
|
|
Quaternion q = uluaGetQuaternion( L, 1 );
|
|
float angle = 0.0;
|
|
Vector3 axis = { 0.0 };
|
|
|
|
QuaternionToAxisAngle( q, &axis, &angle );
|
|
|
|
uluaPushVector3( L, axis );
|
|
lua_pushnumber( L, angle );
|
|
|
|
return 2;
|
|
}
|
|
|
|
/*
|
|
> result = RL.QuaternionFromEuler( float pitch, float yaw, float roll )
|
|
|
|
Get the quaternion equivalent to Euler angles
|
|
NOTE: Rotation order is ZYX
|
|
|
|
- Success return Quaternion
|
|
*/
|
|
int lmathQuaternionFromEuler( lua_State* L ) {
|
|
float pitch = luaL_checknumber( L, 1 );
|
|
float yaw = luaL_checknumber( L, 2 );
|
|
float roll = luaL_checknumber( L, 3 );
|
|
|
|
uluaPushQuaternion( L, QuaternionFromEuler( pitch, yaw, roll ) );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
> result = RL.QuaternionToEuler( Quaternion q )
|
|
|
|
Get the Euler angles equivalent to quaternion (roll, pitch, yaw)
|
|
NOTE: Angles are returned in a Vector3 struct in radians
|
|
|
|
- Success return Vector3
|
|
*/
|
|
int lmathQuaternionToEuler( lua_State* L ) {
|
|
Quaternion q = uluaGetQuaternion( L, 1 );
|
|
|
|
uluaPushVector3( L, QuaternionToEuler( q ) );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
> result = RL.QuaternionTransform( Quaternion q, Matrix mat )
|
|
|
|
Transform a quaternion given a transformation matrix
|
|
|
|
- Success return Quaternion
|
|
*/
|
|
int lmathQuaternionTransform( lua_State* L ) {
|
|
Quaternion q = uluaGetQuaternion( L, 1 );
|
|
Matrix mat = uluaGetMatrix( L, 2 );
|
|
|
|
uluaPushQuaternion( L, QuaternionTransform( q, mat ) );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
> result = RL.QuaternionEquals( Quaternion q1, Quaternion q2 )
|
|
|
|
Check whether two given quaternions are almost equal
|
|
|
|
- Success return int
|
|
*/
|
|
int lmathQuaternionEquals( lua_State* L ) {
|
|
Quaternion q1 = uluaGetQuaternion( L, 1 );
|
|
Quaternion q2 = uluaGetQuaternion( L, 2 );
|
|
|
|
lua_pushinteger( L, QuaternionEquals( q1, q2 ) );
|
|
|
|
return 1;
|
|
}
|