Files
reilua-enhanced/src/rmath.c
2024-03-17 10:38:30 +02:00

1851 lines
36 KiB
C

#include "main.h"
#include "state.h"
#include "rmath.h"
#include "lua_core.h"
inline int imin( int a, int b ) {
return a < b ? a : b;
}
inline int imax( int a, int b ) {
return a > b ? a : b;
}
/*
## Math - Utils
*/
/*
> result = RL.Round( float value )
Round float value
- Success return float
*/
int lmathRound( lua_State* L ) {
float value = luaL_checknumber( L, 1 );
lua_pushnumber( L, round( value ) );
return 1;
}
/*
> result = RL.Clamp( float value, float min, float max )
Clamp float value
- Success return float
*/
int lmathClamp( lua_State* L ) {
float value = luaL_checknumber( L, 1 );
float min = luaL_checknumber( L, 2 );
float max = luaL_checknumber( L, 3 );
lua_pushnumber( L, Clamp( value, min, max ) );
return 1;
}
/*
> result = RL.Lerp( float a, float b, float amount )
Calculate linear interpolation between two floats
- Success return float
*/
int lmathLerp( lua_State* L ) {
float start = luaL_checknumber( L, 1 );
float end = luaL_checknumber( L, 2 );
float amount = luaL_checknumber( L, 3 );
lua_pushnumber( L, Lerp( start, end, amount ) );
return 1;
}
/*
> result = RL.Normalize( float value, float a, float b )
Normalize input value within input range
- Success return float
*/
int lmathNormalize( lua_State* L ) {
float value = luaL_checknumber( L, 1 );
float start = luaL_checknumber( L, 2 );
float end = luaL_checknumber( L, 3 );
lua_pushnumber( L, Normalize( value, start, end ) );
return 1;
}
/*
> result = RL.Remap( float value, float inputStart, float inputEnd, float outputStart, float outputEnd )
Remap input value within input range to output range
- Success return float
*/
int lmathRemap( lua_State* L ) {
float value = luaL_checknumber( L, 1 );
float inputStart = luaL_checknumber( L, 2 );
float inputEnd = luaL_checknumber( L, 3 );
float outputStart = luaL_checknumber( L, 4 );
float outputEnd = luaL_checknumber( L, 5 );
lua_pushnumber( L, Remap( value, inputStart, inputEnd, outputStart, outputEnd ) );
return 1;
}
/*
> result = RL.Wrap( float value, float min, float max )
Wrap input value from min to max
- Success return float
*/
int lmathWrap( lua_State* L ) {
float value = luaL_checknumber( L, 1 );
float min = luaL_checknumber( L, 2 );
float max = luaL_checknumber( L, 3 );
lua_pushnumber( L, Wrap( value, min, max ) );
return 1;
}
/*
> result = RL.FloatEquals( float x, float y )
Check whether two given floats are almost equal
- Success return int
*/
int lmathFloatEquals( lua_State* L ) {
float x = luaL_checknumber( L, 1 );
float y = luaL_checknumber( L, 2 );
lua_pushinteger( L, FloatEquals( x, y ) );
return 1;
}
/*
## Math - Vector2
*/
/*
> result = RL.Vector2Zero()
Vector with components value 0.0f
- Success return Vector2
*/
int lmathVector2Zero( lua_State* L ) {
uluaPushVector2( L, Vector2Zero() );
return 1;
}
/*
> result = RL.Vector2One()
Vector with components value 1.0f
- Success return Vector2
*/
int lmathVector2One( lua_State* L ) {
uluaPushVector2( L, Vector2One() );
return 1;
}
/*
> result = RL.Vector2Add( Vector2 v1, Vector2 v2 )
Add two vectors (v1 + v2)
- Success return Vector2
*/
int lmathVector2Add( lua_State* L ) {
Vector2 v1 = uluaGetVector2( L, 1 );
Vector2 v2 = uluaGetVector2( L, 2 );
uluaPushVector2( L, Vector2Add( v1, v2 ) );
return 1;
}
/*
> result = RL.Vector2AddValue( Vector2 v, float add )
Add vector and float value
- Success return Vector2
*/
int lmathVector2AddValue( lua_State* L ) {
Vector2 v = uluaGetVector2( L, 1 );
float add = luaL_checknumber( L, 2 );
uluaPushVector2( L, Vector2AddValue( v, add ) );
return 1;
}
/*
> result = RL.Vector2Subtract( Vector2 v1, Vector2 v2 )
Subtract two vectors (v1 - v2)
- Success return Vector2
*/
int lmathVector2Subtract( lua_State* L ) {
Vector2 v1 = uluaGetVector2( L, 1 );
Vector2 v2 = uluaGetVector2( L, 2 );
uluaPushVector2( L, Vector2Subtract( v1, v2 ) );
return 1;
}
/*
> result = RL.Vector2SubtractValue( Vector2 v, float sub )
Subtract vector by float value
- Success return Vector2
*/
int lmathVector2SubtractValue( lua_State* L ) {
Vector2 v = uluaGetVector2( L, 1 );
float sub = luaL_checknumber( L, 2 );
uluaPushVector2( L, Vector2SubtractValue( v, sub ) );
return 1;
}
/*
> result = RL.Vector2Length( vector2 v )
Calculate vector length
- Success return float
*/
int lmathVector2Length( lua_State* L ) {
Vector2 v = uluaGetVector2( L, 1 );
lua_pushnumber( L, Vector2Length( v ) );
return 1;
}
/*
> result = RL.Vector2LengthSqr( vector2 v )
Calculate vector square length
- Success return float
*/
int lmathVector2LengthSqr( lua_State* L ) {
Vector2 v = uluaGetVector2( L, 1 );
lua_pushnumber( L, Vector2LengthSqr( v ) );
return 1;
}
/*
> result = RL.Vector2DotProduct( Vector2 v1, Vector2 v2 )
Calculate two vectors dot product
- Success return float
*/
int lmathVector2DotProduct( lua_State* L ) {
Vector2 v1 = uluaGetVector2( L, 1 );
Vector2 v2 = uluaGetVector2( L, 2 );
lua_pushnumber( L, Vector2DotProduct( v1, v2 ) );
return 1;
}
/*
> result = RL.Vector2Distance( Vector2 v1, Vector2 v2 )
Calculate distance between two vectors
- Success return float
*/
int lmathVector2Distance( lua_State* L ) {
Vector2 v1 = uluaGetVector2( L, 1 );
Vector2 v2 = uluaGetVector2( L, 2 );
lua_pushnumber( L, Vector2Distance( v1, v2 ) );
return 1;
}
/*
> result = RL.Vector2DistanceSqr( Vector2 v1, Vector2 v2 )
Calculate square distance between two vectors
- Success return float
*/
int lmathVector2DistanceSqr( lua_State* L ) {
Vector2 v1 = uluaGetVector2( L, 1 );
Vector2 v2 = uluaGetVector2( L, 2 );
lua_pushnumber( L, Vector2DistanceSqr( v1, v2 ) );
return 1;
}
/*
> result = RL.Vector2Angle( Vector2 v1, Vector2 v2 )
Calculate angle between two vectors
NOTE: Angle is calculated from origin point (0, 0)
- Success return float
*/
int lmathVector2Angle( lua_State* L ) {
Vector2 v1 = uluaGetVector2( L, 1 );
Vector2 v2 = uluaGetVector2( L, 2 );
lua_pushnumber( L, Vector2Angle( v1, v2 ) );
return 1;
}
/*
> result = RL.Vector2LineAngle( Vector2 a, Vector2 b )
Calculate angle defined by a two vectors line
NOTE: Parameters need to be normalized
Current implementation should be aligned with glm::angle
- Success return float
*/
int lmathVector2LineAngle( lua_State* L ) {
Vector2 start = uluaGetVector2( L, 1 );
Vector2 end = uluaGetVector2( L, 2 );
lua_pushnumber( L, Vector2LineAngle( start, end ) );
return 1;
}
/*
> result = RL.Vector2Scale( Vector2 v, float scale )
Scale vector (multiply by value)
- Success return Vector2
*/
int lmathVector2Scale( lua_State* L ) {
Vector2 v = uluaGetVector2( L, 1 );
float scale = luaL_checknumber( L, 2 );
uluaPushVector2( L, Vector2Scale( v, scale ) );
return 1;
}
/*
> result = RL.Vector2Multiply( Vector2 v1, Vector2 v2 )
Multiply vector by vector
- Success return Vector2
*/
int lmathVector2Multiply( lua_State* L ) {
Vector2 v1 = uluaGetVector2( L, 1 );
Vector2 v2 = uluaGetVector2( L, 2 );
uluaPushVector2( L, Vector2Multiply( v1, v2 ) );
return 1;
}
/*
> result = RL.Vector2Negate( Vector2 v )
Negate vector
- Success return Vector2
*/
int lmathVector2Negate( lua_State* L ) {
Vector2 v = uluaGetVector2( L, 1 );
uluaPushVector2( L, Vector2Negate( v ) );
return 1;
}
/*
> result = RL.Vector2Divide( Vector2 v1, Vector2 v2 )
Divide vector by vector
- Success return Vector2
*/
int lmathVector2Divide( lua_State* L ) {
Vector2 v1 = uluaGetVector2( L, 1 );
Vector2 v2 = uluaGetVector2( L, 2 );
uluaPushVector2( L, Vector2Divide( v1, v2 ) );
return 1;
}
/*
> result = RL.Vector2Normalize( Vector2 v )
Normalize provided vector
- Success return Vector2
*/
int lmathVector2Normalize( lua_State* L ) {
Vector2 v = uluaGetVector2( L, 1 );
uluaPushVector2( L, Vector2Normalize( v ) );
return 1;
}
/*
> result = RL.Vector2Transform( Vector2 v, Matrix mat )
Transforms a Vector2 by a given Matrix
- Success return Vector2
*/
int lmathVector2Transform( lua_State* L ) {
Vector2 v = uluaGetVector2( L, 1 );
Matrix mat = uluaGetMatrix( L, 2 );
uluaPushVector2( L, Vector2Transform( v, mat ) );
return 1;
}
/*
> result = RL.Vector2Lerp( Vector2 v1, Vector2 v2, float amount )
Calculate linear interpolation between two vectors
- Success return Vector2
*/
int lmathVector2Lerp( lua_State* L ) {
Vector2 v1 = uluaGetVector2( L, 1 );
Vector2 v2 = uluaGetVector2( L, 2 );
float amount = luaL_checknumber( L, 3 );
uluaPushVector2( L, Vector2Lerp( v1, v2, amount ) );
return 1;
}
/*
> result = RL.Vector2Reflect( Vector2 v, Vector2 normal )
Calculate reflected vector to normal
- Success return Vector2
*/
int lmathVector2Reflect( lua_State* L ) {
Vector2 v1 = uluaGetVector2( L, 1 );
Vector2 v2 = uluaGetVector2( L, 2 );
uluaPushVector2( L, Vector2Reflect( v1, v2 ) );
return 1;
}
/*
> result = RL.Vector2Rotate( Vector2 v, float angle )
Rotate vector by angle
- Success return Vector2
*/
int lmathVector2Rotate( lua_State* L ) {
Vector2 v = uluaGetVector2( L, 1 );
float degs = luaL_checknumber( L, 2 );
uluaPushVector2( L, Vector2Rotate( v, degs ) );
return 1;
}
/*
> result = RL.Vector2MoveTowards( Vector2 v, Vector2 target, float maxDistance )
Move Vector towards target
- Success return Vector2
*/
int lmathVector2MoveTowards( lua_State* L ) {
Vector2 v1 = uluaGetVector2( L, 1 );
Vector2 v2 = uluaGetVector2( L, 2 );
float maxDistance = luaL_checknumber( L, 3 );
uluaPushVector2( L, Vector2MoveTowards( v1, v2, maxDistance ) );
return 1;
}
/*
> result = RL.Vector2Invert( Vector2 v )
Invert the given vector
- Success return Vector2
*/
int lmathVector2Invert( lua_State* L ) {
Vector2 v = uluaGetVector2( L, 1 );
uluaPushVector2( L, Vector2Invert( v ) );
return 1;
}
/*
> result = RL.Vector2Clamp( Vector2 v, Vector2 min, Vector2 max )
Clamp the components of the vector between
min and max values specified by the given vectors
- Success return Vector2
*/
int lmathVector2Clamp( lua_State* L ) {
Vector2 v = uluaGetVector2( L, 1 );
Vector2 min = uluaGetVector2( L, 2 );
Vector2 max = uluaGetVector2( L, 3 );
uluaPushVector2( L, Vector2Clamp( v, min, max ) );
return 1;
}
/*
> result = RL.Vector2ClampValue( Vector2 v, float min, float max )
Clamp the magnitude of the vector between two min and max values
- Success return Vector2
*/
int lmathVector2ClampValue( lua_State* L ) {
Vector2 v = uluaGetVector2( L, 1 );
float min = luaL_checknumber( L, 2 );
float max = luaL_checknumber( L, 3 );
uluaPushVector2( L, Vector2ClampValue( v, min, max ) );
return 1;
}
/*
> result = RL.Vector2Equals( Vector2 v1, Vector2 v2 )
Check whether two given vectors are almost equal
- Success return int
*/
int lmathVector2Equals( lua_State* L ) {
Vector2 v1 = uluaGetVector2( L, 1 );
Vector2 v2 = uluaGetVector2( L, 2 );
lua_pushinteger( L, Vector2Equals( v1, v2 ) );
return 1;
}
/*
## Math - Vector 3
*/
/*
> result = RL.Vector3Zero()
Vector with components value 0.0f
- Success return Vector3
*/
int lmathVector3Zero( lua_State* L ) {
uluaPushVector3( L, Vector3Zero() );
return 1;
}
/*
> result = RL.Vector3One()
Vector with components value 1.0f
- Success return Vector3
*/
int lmathVector3One( lua_State* L ) {
uluaPushVector3( L, Vector3One() );
return 1;
}
/*
> result = RL.Vector3Add( Vector3 v1, Vector3 v2 )
Add two vectors
- Success return Vector3
*/
int lmathVector3Add( lua_State* L ) {
Vector3 v1 = uluaGetVector3( L, 1 );
Vector3 v2 = uluaGetVector3( L, 2 );
uluaPushVector3( L, Vector3Add( v1, v2 ) );
return 1;
}
/*
> result = RL.Vector3AddValue( Vector3 v, float add )
Add vector and float value
- Success return Vector3
*/
int lmathVector3AddValue( lua_State* L ) {
Vector3 v = uluaGetVector3( L, 1 );
float add = luaL_checknumber( L, 2 );
uluaPushVector3( L, Vector3AddValue( v, add ) );
return 1;
}
/*
> result = RL.Vector3Subtract( Vector3 v1, Vector3 v2 )
Subtract two vectors
- Success return Vector3
*/
int lmathVector3Subtract( lua_State* L ) {
Vector3 v1 = uluaGetVector3( L, 1 );
Vector3 v2 = uluaGetVector3( L, 2 );
uluaPushVector3( L, Vector3Subtract( v1, v2 ) );
return 1;
}
/*
> result = RL.Vector3SubtractValue( Vector3 v, float sub )
Subtract vector by float value
- Success return Vector3
*/
int lmathVector3SubtractValue( lua_State* L ) {
Vector3 v = uluaGetVector3( L, 1 );
float sub = luaL_checknumber( L, 2 );
uluaPushVector3( L, Vector3SubtractValue( v, sub ) );
return 1;
}
/*
> result = RL.Vector3Scale( Vector3 v, float scalar )
Multiply vector by scalar
- Success return Vector3
*/
int lmathVector3Scale( lua_State* L ) {
Vector3 v = uluaGetVector3( L, 1 );
float scalar = luaL_checknumber( L, 2 );
uluaPushVector3( L, Vector3Scale( v, scalar ) );
return 1;
}
/*
> result = RL.Vector3Multiply( Vector3 v1, Vector3 v2 )
Multiply vector by vector
- Success return Vector3
*/
int lmathVector3Multiply( lua_State* L ) {
Vector3 v1 = uluaGetVector3( L, 1 );
Vector3 v2 = uluaGetVector3( L, 2 );
uluaPushVector3( L, Vector3Multiply( v1, v2 ) );
return 1;
}
/*
> result = RL.Vector3CrossProduct( Vector3 v1, Vector3 v2 )
Calculate two vectors cross product
- Success return Vector3
*/
int lmathVector3CrossProduct( lua_State* L ) {
Vector3 v1 = uluaGetVector3( L, 1 );
Vector3 v2 = uluaGetVector3( L, 2 );
uluaPushVector3( L, Vector3CrossProduct( v1, v2 ) );
return 1;
}
/*
> result = RL.Vector3Perpendicular( Vector3 v )
Calculate one vector perpendicular vector
- Success return Vector3
*/
int lmathVector3Perpendicular( lua_State* L ) {
Vector3 v = uluaGetVector3( L, 1 );
uluaPushVector3( L, Vector3Perpendicular( v ) );
return 1;
}
/*
> result = RL.Vector3Length( Vector3 v )
Calculate vector length
- Success return float
*/
int lmathVector3Length( lua_State* L ) {
Vector3 v = uluaGetVector3( L, 1 );
lua_pushnumber( L, Vector3Length( v ) );
return 1;
}
/*
> result = RL.Vector3LengthSqr( Vector3 v )
Calculate vector square length
- Success return float
*/
int lmathVector3LengthSqr( lua_State* L ) {
Vector3 v = uluaGetVector3( L, 1 );
lua_pushnumber( L, Vector3LengthSqr( v ) );
return 1;
}
/*
> result = RL.Vector3DotProduct( Vector3 v1, Vector3 v2 )
Calculate two vectors dot product
- Success return float
*/
int lmathVector3DotProduct( lua_State* L ) {
Vector3 v1 = uluaGetVector3( L, 1 );
Vector3 v2 = uluaGetVector3( L, 2 );
lua_pushnumber( L, Vector3DotProduct( v1, v2 ) );
return 1;
}
/*
> result = RL.Vector3Distance( Vector3 v1, Vector3 v2 )
Calculate distance between two vectors
- Success return float
*/
int lmathVector3Distance( lua_State* L ) {
Vector3 v1 = uluaGetVector3( L, 1 );
Vector3 v2 = uluaGetVector3( L, 2 );
lua_pushnumber( L, Vector3Distance( v1, v2 ) );
return 1;
}
/*
> result = RL.Vector3DistanceSqr( Vector3 v1, Vector3 v2 )
Calculate square distance between two vectors
- Success return float
*/
int lmathVector3DistanceSqr( lua_State* L ) {
Vector3 v1 = uluaGetVector3( L, 1 );
Vector3 v2 = uluaGetVector3( L, 2 );
lua_pushnumber( L, Vector3DistanceSqr( v1, v2 ) );
return 1;
}
/*
> result = RL.Vector3Angle( Vector3 v1, Vector3 v2 )
Calculate angle between two vectors
- Success return float
*/
int lmathVector3Angle( lua_State* L ) {
Vector3 v1 = uluaGetVector3( L, 1 );
Vector3 v2 = uluaGetVector3( L, 2 );
lua_pushnumber( L, Vector3Angle( v1, v2 ) );
return 1;
}
/*
> result = RL.Vector3Negate( Vector3 v )
Negate provided vector (invert direction)
- Success return Vector3
*/
int lmathVector3Negate( lua_State* L ) {
Vector3 v = uluaGetVector3( L, 1 );
uluaPushVector3( L, Vector3Negate( v ) );
return 1;
}
/*
> result = RL.Vector3Divide( Vector3 v1, Vector3 v2 )
Divide vector by vector
- Success return Vector3
*/
int lmathVector3Divide( lua_State* L ) {
Vector3 v1 = uluaGetVector3( L, 1 );
Vector3 v2 = uluaGetVector3( L, 2 );
uluaPushVector3( L, Vector3Divide( v1, v2 ) );
return 1;
}
/*
> result = RL.Vector3Normalize( Vector3 v )
Normalize provided vector
- Success return Vector3
*/
int lmathVector3Normalize( lua_State* L ) {
Vector3 v = uluaGetVector3( L, 1 );
uluaPushVector3( L, Vector3Normalize( v ) );
return 1;
}
/*
> result = RL.Vector3Project( Vector3 v1, Vector3 v2 )
Calculate the projection of the vector v1 on to v2
- Success return Vector3
*/
int lmathVector3Project( lua_State* L ) {
Vector3 v1 = uluaGetVector3( L, 1 );
Vector3 v2 = uluaGetVector3( L, 2 );
uluaPushVector3( L, Vector3Project( v1, v2 ) );
return 1;
}
/*
> result = RL.Vector3Reject( Vector3 v1, Vector3 v2 )
Calculate the rejection of the vector v1 on to v2
- Success return Vector3
*/
int lmathVector3Reject( lua_State* L ) {
Vector3 v1 = uluaGetVector3( L, 1 );
Vector3 v2 = uluaGetVector3( L, 2 );
uluaPushVector3( L, Vector3Reject( v1, v2 ) );
return 1;
}
/*
> v1, v2 = RL.Vector3OrthoNormalize( Vector3 v1, Vector3 v2 )
Orthonormalize provided vectors. Makes vectors normalized and orthogonal to each other.
Gram-Schmidt function implementation
- Success return Vector3, Vector3
*/
int lmathVector3OrthoNormalize( lua_State* L ) {
Vector3 v1 = uluaGetVector3( L, 1 );
Vector3 v2 = uluaGetVector3( L, 2 );
Vector3OrthoNormalize( &v1, &v2 );
uluaPushVector3( L, v1 );
uluaPushVector3( L, v2 );
return 2;
}
/*
> result = RL.Vector3Transform( Vector3 v, Matrix mat )
Transforms a Vector3 by a given Matrix
- Success return Vector3
*/
int lmathVector3Transform( lua_State* L ) {
Vector3 v = uluaGetVector3( L, 1 );
Matrix mat = uluaGetMatrix( L, 2 );
uluaPushVector3( L, Vector3Transform( v, mat ) );
return 1;
}
/*
> result = RL.Vector3RotateByQuaternion( Vector3 v, Quaternion q )
Transform a vector by quaternion rotation
- Success return Vector3
*/
int lmathVector3RotateByQuaternion( lua_State* L ) {
Vector3 v = uluaGetVector3( L, 1 );
Quaternion q = uluaGetQuaternion( L, 2 );
uluaPushVector3( L, Vector3RotateByQuaternion( v, q ) );
return 1;
}
/*
> result = RL.Vector3RotateByAxisAngle( Vector3 v, Vector3 axis, float angle )
Rotates a vector around an axis
- Success return Vector3
*/
int lmathVector3RotateByAxisAngle( lua_State* L ) {
Vector3 v = uluaGetVector3( L, 1 );
Vector3 axis = uluaGetVector3( L, 2 );
float angle = luaL_checknumber( L, 3 );
uluaPushVector3( L, Vector3RotateByAxisAngle( v, axis, angle ) );
return 1;
}
/*
> result = RL.Vector3Lerp( Vector3 v1, Vector3 v2, float amount )
Calculate linear interpolation between two vectors
- Success return Vector3
*/
int lmathVector3Lerp( lua_State* L ) {
Vector3 v1 = uluaGetVector3( L, 1 );
Vector3 v2 = uluaGetVector3( L, 2 );
float amount = luaL_checknumber( L, 3 );
uluaPushVector3( L, Vector3Lerp( v1, v2, amount ) );
return 1;
}
/*
> result = RL.Vector3Reflect( Vector3 v, Vector3 normal )
Calculate reflected vector to normal
- Success return Vector3
*/
int lmathVector3Reflect( lua_State* L ) {
Vector3 v = uluaGetVector3( L, 1 );
Vector3 normal = uluaGetVector3( L, 2 );
uluaPushVector3( L, Vector3Reflect( v, normal ) );
return 1;
}
/*
> result = RL.Vector3Min( Vector3 v1, Vector3 v2 )
Get min value for each pair of components
- Success return Vector3
*/
int lmathVector3Min( lua_State* L ) {
Vector3 v1 = uluaGetVector3( L, 1 );
Vector3 v2 = uluaGetVector3( L, 2 );
uluaPushVector3( L, Vector3Min( v1, v2 ) );
return 1;
}
/*
> result = RL.Vector3Max( Vector3 v1, Vector3 v2 )
Get max value for each pair of components
- Success return Vector3
*/
int lmathVector3Max( lua_State* L ) {
Vector3 v1 = uluaGetVector3( L, 1 );
Vector3 v2 = uluaGetVector3( L, 2 );
uluaPushVector3( L, Vector3Max( v1, v2 ) );
return 1;
}
/*
> result = RL.Vector3Barycenter( Vector3 p, Vector3 a, Vector3 b, Vector3 c )
Compute barycenter coordinates (u, v, w) for point p with respect to triangle (a, b, c)
NOTE: Assumes P is on the plane of the triangle
- Success return Vector3
*/
int lmathVector3Barycenter( lua_State* L ) {
Vector3 p = uluaGetVector3( L, 1 );
Vector3 a = uluaGetVector3( L, 2 );
Vector3 b = uluaGetVector3( L, 3 );
Vector3 c = uluaGetVector3( L, 4 );
uluaPushVector3( L, Vector3Barycenter( p, a, b, c ) );
return 1;
}
/*
> result = RL.Vector3Unproject( Vector3 source, Matrix projection, Matrix view )
Projects a Vector3 from screen space into object space
NOTE: We are avoiding calling other raymath functions despite available
- Success return Vector3
*/
int lmathVector3Unproject( lua_State* L ) {
Vector3 source = uluaGetVector3( L, 1 );
Matrix projection = uluaGetMatrix( L, 2 );
Matrix view = uluaGetMatrix( L, 3 );
uluaPushVector3( L, Vector3Unproject( source, projection, view ) );
return 1;
}
/*
> result = RL.Vector3Invert( Vector3 v )
Invert the given vector
- Success return Vector3
*/
int lmathVector3Invert( lua_State* L ) {
Vector3 v = uluaGetVector3( L, 1 );
uluaPushVector3( L, Vector3Invert( v ) );
return 1;
}
/*
> result = RL.Vector3Clamp( Vector3 v, Vector3 min, Vector3 max )
Clamp the components of the vector between
min and max values specified by the given vectors
- Success return Vector3
*/
int lmathVector3Clamp( lua_State* L ) {
Vector3 v = uluaGetVector3( L, 1 );
Vector3 min = uluaGetVector3( L, 2 );
Vector3 max = uluaGetVector3( L, 3 );
uluaPushVector3( L, Vector3Clamp( v, min, max ) );
return 1;
}
/*
> result = RL.Vector3ClampValue( Vector3 v, float min, float max )
Clamp the magnitude of the vector between two values
- Success return Vector3
*/
int lmathVector3ClampValue( lua_State* L ) {
Vector3 v = uluaGetVector3( L, 1 );
float min = luaL_checknumber( L, 2 );
float max = luaL_checknumber( L, 3 );
uluaPushVector3( L, Vector3ClampValue( v, min, max ) );
return 1;
}
/*
> result = RL.Vector3Equals( Vector3 v1, Vector3 v2 )
Check whether two given vectors are almost equal
- Success return int
*/
int lmathVector3Equals( lua_State* L ) {
Vector3 v1 = uluaGetVector3( L, 1 );
Vector3 v2 = uluaGetVector3( L, 2 );
lua_pushinteger( L, Vector3Equals( v1, v2 ) );
return 1;
}
/*
> result = RL.Vector3Refract( Vector3 v, Vector3 n, float r )
Compute the direction of a refracted ray where v specifies the
normalized direction of the incoming ray, n specifies the
normalized normal vector of the interface of two optical media,
and r specifies the ratio of the refractive index of the medium
from where the ray comes to the refractive index of the medium
on the other side of the surface
- Success return Vector3
*/
int lmathVector3Refract( lua_State* L ) {
Vector3 v = uluaGetVector3( L, 1 );
Vector3 n = uluaGetVector3( L, 2 );
float r = luaL_checknumber( L, 3 );
uluaPushVector3( L, Vector3Refract( v, n, r ) );
return 1;
}
/*
## Math - Matrix
*/
/*
> result = RL.MatrixDeterminant( Matrix mat )
Compute matrix determinant
- Success return float
*/
int lmathMatrixDeterminant( lua_State* L ) {
Matrix mat = uluaGetMatrix( L, 1 );
lua_pushnumber( L, MatrixDeterminant( mat ) );
return 1;
}
/*
> result = RL.MatrixTrace( Matrix mat )
Get the trace of the matrix (sum of the values along the diagonal)
- Success return float
*/
int lmathMatrixTrace( lua_State* L ) {
Matrix mat = uluaGetMatrix( L, 1 );
lua_pushnumber( L, MatrixTrace( mat ) );
return 1;
}
/*
> result = RL.MatrixTranspose( Matrix mat )
Transposes provided matrix
- Success return Matrix
*/
int lmathMatrixTranspose( lua_State* L ) {
Matrix mat = uluaGetMatrix( L, 1 );
uluaPushMatrix( L, MatrixTranspose( mat ) );
return 1;
}
/*
> result = RL.MatrixInvert( Matrix mat )
Invert provided matrix
- Success return Matrix
*/
int lmathMatrixInvert( lua_State* L ) {
Matrix mat = uluaGetMatrix( L, 1 );
uluaPushMatrix( L, MatrixInvert( mat ) );
return 1;
}
/*
> result = RL.MatrixIdentity()
Get identity matrix
- Success return Matrix
*/
int lmathMatrixIdentity( lua_State* L ) {
uluaPushMatrix( L, MatrixIdentity() );
return 1;
}
/*
> result = RL.MatrixAdd( Matrix left, Matrix right )
Add two matrices
- Success return Matrix
*/
int lmathMatrixAdd( lua_State* L ) {
Matrix mat1 = uluaGetMatrix( L, 1 );
Matrix mat2 = uluaGetMatrix( L, 2 );
uluaPushMatrix( L, MatrixAdd( mat1, mat2 ) );
return 1;
}
/*
> result = RL.MatrixSubtract( Matrix left, Matrix right )
Subtract two matrices (left - right)
- Success return Matrix
*/
int lmathMatrixSubtract( lua_State* L ) {
Matrix mat1 = uluaGetMatrix( L, 1 );
Matrix mat2 = uluaGetMatrix( L, 2 );
uluaPushMatrix( L, MatrixSubtract( mat1, mat2 ) );
return 1;
}
/*
> result = RL.MatrixMultiply( Matrix left, Matrix right )
Get two matrix multiplication
- Success return Matrix
*/
int lmathMatrixMultiply( lua_State* L ) {
Matrix mat1 = uluaGetMatrix( L, 1 );
Matrix mat2 = uluaGetMatrix( L, 2 );
uluaPushMatrix( L, MatrixMultiply( mat1, mat2 ) );
return 1;
}
/*
> result = RL.MatrixTranslate( Vector3 translate )
Get translation matrix
- Success return Matrix
*/
int lmathMatrixTranslate( lua_State* L ) {
Vector3 v = uluaGetVector3( L, 1 );
uluaPushMatrix( L, MatrixTranslate( v.x, v.y, v.z ) );
return 1;
}
/*
> result = RL.MatrixRotate( Vector3 axis, float angle )
Create rotation matrix from axis and angle. NOTE: Angle should be provided in radians
- Success return Matrix
*/
int lmathMatrixRotate( lua_State* L ) {
Vector3 axis = uluaGetVector3( L, 1 );
float angle = luaL_checknumber( L, 2 );
uluaPushMatrix( L, MatrixRotate( axis, angle ) );
return 1;
}
/*
> result = RL.MatrixRotateX( float angle )
Get x-rotation matrix (angle in radians)
- Success return Matrix
*/
int lmathMatrixRotateX( lua_State* L ) {
float angle = luaL_checknumber( L, 1 );
uluaPushMatrix( L, MatrixRotateX( angle ) );
return 1;
}
/*
> result = RL.MatrixRotateY( float angle )
Get y-rotation matrix (angle in radians)
- Success return Matrix
*/
int lmathMatrixRotateY( lua_State* L ) {
float angle = luaL_checknumber( L, 1 );
uluaPushMatrix( L, MatrixRotateY( angle ) );
return 1;
}
/*
> result = RL.MatrixRotateZ( float angle )
Get z-rotation matrix (angle in radians)
- Success return Matrix
*/
int lmathMatrixRotateZ( lua_State* L ) {
float angle = luaL_checknumber( L, 1 );
uluaPushMatrix( L, MatrixRotateZ( angle ) );
return 1;
}
/*
> result = RL.MatrixRotateXYZ( Vector3 angles )
Get xyz-rotation matrix (angles in radians)
- Success return Matrix
*/
int lmathMatrixRotateXYZ( lua_State* L ) {
Vector3 angle = uluaGetVector3( L, 1 );
uluaPushMatrix( L, MatrixRotateXYZ( angle ) );
return 1;
}
/*
> result = RL.MatrixRotateZYX( Vector3 angles )
Get zyx-rotation matrix (angles in radians)
- Success return Matrix
*/
int lmathMatrixRotateZYX( lua_State* L ) {
Vector3 angle = uluaGetVector3( L, 1 );
uluaPushMatrix( L, MatrixRotateZYX( angle ) );
return 1;
}
/*
> result = RL.MatrixScale( Vector3 scale )
Get scaling matrix
- Success return Matrix
*/
int lmathMatrixScale( lua_State* L ) {
Vector3 v = uluaGetVector3( L, 1 );
uluaPushMatrix( L, MatrixScale( v.x, v.y, v.z ) );
return 1;
}
/*
> result = RL.MatrixFrustum( double left, double right, double bottom, double top, double near, double far )
Get perspective projection matrix
- Success return Matrix
*/
int lmathMatrixFrustum( lua_State* L ) {
float left = luaL_checknumber( L, 1 );
float right = luaL_checknumber( L, 2);
float bottom = luaL_checknumber( L, 3 );
float top = luaL_checknumber( L, 4 );
float near = luaL_checknumber( L, 5 );
float far = luaL_checknumber( L, 6 );
uluaPushMatrix( L, MatrixFrustum( left, right, bottom, top, near, far ) );
return 1;
}
/*
> result = RL.MatrixPerspective( double fovy, double aspect, double near, double far )
Get perspective projection matrix
- Success return Matrix
*/
int lmathMatrixPerspective( lua_State* L ) {
float fovy = luaL_checknumber( L, 1 );
float aspect = luaL_checknumber( L, 2 );
float near = luaL_checknumber( L, 3 );
float far = luaL_checknumber( L, 4 );
uluaPushMatrix( L, MatrixPerspective( fovy, aspect, near, far ) );
return 1;
}
/*
> result = RL.MatrixOrtho( double left, double right, double bottom, double top, double near, double far )
Get orthographic projection matrix
- Success return Matrix
*/
int lmathMatrixOrtho( lua_State* L ) {
float left = luaL_checknumber( L, 1 );
float right = luaL_checknumber( L, 2 );
float bottom = luaL_checknumber( L, 3 );
float top = luaL_checknumber( L, 4 );
float near = luaL_checknumber( L, 5 );
float far = luaL_checknumber( L, 6 );
uluaPushMatrix( L, MatrixOrtho( left, right, bottom, top, near, far ) );
return 1;
}
/*
> result = RL.MatrixLookAt( Vector3 eye, Vector3 target, Vector3 up )
Get camera look-at matrix (View matrix)
- Success return Matrix
*/
int lmathMatrixLookAt( lua_State* L ) {
Vector3 eye = uluaGetVector3( L, 1 );
Vector3 target = uluaGetVector3( L, 2 );
Vector3 up = uluaGetVector3( L, 3 );
uluaPushMatrix( L, MatrixLookAt( eye, target, up ) );
return 1;
}
/*
## Math - Quaternion
*/
/*
> result = RL.QuaternionAdd( Quaternion q1, Quaternion q2 )
Add two quaternions
- Success return Quaternion
*/
int lmathQuaternionAdd( lua_State* L ) {
Quaternion q1 = uluaGetQuaternion( L, 1 );
Quaternion q2 = uluaGetQuaternion( L, 2 );
uluaPushQuaternion( L, QuaternionAdd( q1, q2 ) );
return 1;
}
/*
> result = RL.QuaternionAddValue( Quaternion q, float add )
Add quaternion and float value
- Success return Quaternion
*/
int lmathQuaternionAddValue( lua_State* L ) {
Quaternion q = uluaGetQuaternion( L, 1 );
float add = luaL_checknumber( L, 2 );
uluaPushQuaternion( L, QuaternionAddValue( q, add ) );
return 1;
}
/*
> result = RL.QuaternionSubtract( Quaternion q1, Quaternion q2 )
Subtract two quaternions
- Success return Quaternion
*/
int lmathQuaternionSubtract( lua_State* L ) {
Quaternion q1 = uluaGetQuaternion( L, 1 );
Quaternion q2 = uluaGetQuaternion( L, 2 );
uluaPushQuaternion( L, QuaternionSubtract( q1, q2 ) );
return 1;
}
/*
> result = RL.QuaternionSubtractValue( Quaternion q, float sub )
Subtract quaternion and float value
- Success return Quaternion
*/
int lmathQuaternionSubtractValue( lua_State* L ) {
Quaternion q = uluaGetQuaternion( L, 1 );
float sub = luaL_checknumber( L, 2 );
uluaPushQuaternion( L, QuaternionSubtractValue( q, sub ) );
return 1;
}
/*
> result = RL.QuaternionIdentity()
Get identity quaternion
- Success return Quaternion
*/
int lmathQuaternionIdentity( lua_State* L ) {
uluaPushQuaternion( L, QuaternionIdentity() );
return 1;
}
/*
> result = RL.QuaternionLength( Quaternion q )
Computes the length of a quaternion
- Success return float
*/
int lmathQuaternionLength( lua_State* L ) {
Quaternion q = uluaGetQuaternion( L, 1 );
lua_pushnumber( L, QuaternionLength( q ) );
return 1;
}
/*
> result = RL.QuaternionNormalize( Quaternion q )
Normalize provided quaternion
- Success return Quaternion
*/
int lmathQuaternionNormalize( lua_State* L ) {
Quaternion q = uluaGetQuaternion( L, 1 );
uluaPushQuaternion( L, QuaternionNormalize( q ) );
return 1;
}
/*
> result = RL.QuaternionInvert( Quaternion q )
Invert provided quaternion
- Success return Quaternion
*/
int lmathQuaternionInvert( lua_State* L ) {
Quaternion q = uluaGetQuaternion( L, 1 );
uluaPushQuaternion( L, QuaternionInvert( q ) );
return 1;
}
/*
> result = RL.QuaternionMultiply( Quaternion q1, Quaternion q2 )
Calculate two quaternion multiplication
- Success return Quaternion
*/
int lmathQuaternionMultiply( lua_State* L ) {
Quaternion q1 = uluaGetQuaternion( L, 1 );
Quaternion q2 = uluaGetQuaternion( L, 2 );
uluaPushQuaternion( L, QuaternionMultiply( q1, q2 ) );
return 1;
}
/*
> result = RL.QuaternionScale( Quaternion q, float mul )
Scale quaternion by float value
- Success return Quaternion
*/
int lmathQuaternionScale( lua_State* L ) {
Quaternion q = uluaGetQuaternion( L, 1 );
float mul = luaL_checknumber( L, 2 );
uluaPushQuaternion( L, QuaternionScale( q, mul ) );
return 1;
}
/*
> result = RL.QuaternionDivide( Quaternion q1, Quaternion q2 )
Divide two quaternions
- Success return Quaternion
*/
int lmathQuaternionDivide( lua_State* L ) {
Quaternion q1 = uluaGetQuaternion( L, 1 );
Quaternion q2 = uluaGetQuaternion( L, 2 );
uluaPushQuaternion( L, QuaternionDivide( q1, q2 ) );
return 1;
}
/*
> result = RL.QuaternionLerp( Quaternion q1, Quaternion q2, float amount )
Calculate linear interpolation between two quaternions
- Success return Quaternion
*/
int lmathQuaternionLerp( lua_State* L ) {
Quaternion q1 = uluaGetQuaternion( L, 1 );
Quaternion q2 = uluaGetQuaternion( L, 2 );
float amount = luaL_checknumber( L, 3 );
uluaPushQuaternion( L, QuaternionLerp( q1, q2, amount ) );
return 1;
}
/*
> result = RL.QuaternionNlerp( Quaternion q1, Quaternion q2, float amount )
Calculate slerp-optimized interpolation between two quaternions
- Success return Quaternion
*/
int lmathQuaternionNlerp( lua_State* L ) {
Quaternion q1 = uluaGetQuaternion( L, 1 );
Quaternion q2 = uluaGetQuaternion( L, 2 );
float amount = luaL_checknumber( L, 3 );
uluaPushQuaternion( L, QuaternionNlerp( q1, q2, amount ) );
return 1;
}
/*
> result = RL.QuaternionSlerp( Quaternion q1, Quaternion q2, float amount )
Calculates spherical linear interpolation between two quaternions
- Success return Quaternion
*/
int lmathQuaternionSlerp( lua_State* L ) {
Quaternion q1 = uluaGetQuaternion( L, 1 );
Quaternion q2 = uluaGetQuaternion( L, 2 );
float amount = luaL_checknumber( L, 3 );
uluaPushQuaternion( L, QuaternionSlerp( q1, q2, amount ) );
return 1;
}
/*
> result = RL.QuaternionFromVector3ToVector3( Vector3 from, Vector3 to )
Calculate quaternion based on the rotation from one vector to another
- Success return Quaternion
*/
int lmathQuaternionFromVector3ToVector3( lua_State* L ) {
Vector3 from = uluaGetVector3( L, 1 );
Vector3 to = uluaGetVector3( L, 2 );
uluaPushQuaternion( L, QuaternionFromVector3ToVector3( from, to ) );
return 1;
}
/*
> result = RL.QuaternionFromMatrix( Matrix mat )
Get a quaternion for a given rotation matrix
- Success return Quaternion
*/
int lmathQuaternionFromMatrix( lua_State* L ) {
Matrix mat = uluaGetMatrix( L, 1 );
uluaPushQuaternion( L, QuaternionFromMatrix( mat ) );
return 1;
}
/*
> result = RL.QuaternionToMatrix( Quaternion q )
Get a quaternion for a given rotation matrix
- Success return Matrix
*/
int lmathQuaternionToMatrix( lua_State* L ) {
Quaternion q = uluaGetQuaternion( L, 1 );
uluaPushMatrix( L, QuaternionToMatrix( q ) );
return 1;
}
/*
> result = RL.QuaternionFromAxisAngle( Vector3 axis, float angle )
Get rotation quaternion for an angle and axis
NOTE: angle must be provided in radians
- Success return Quaternion
*/
int lmathQuaternionFromAxisAngle( lua_State* L ) {
Vector3 axis = uluaGetVector3( L, 1 );
float angle = luaL_checknumber( L, 2 );
uluaPushQuaternion( L, QuaternionFromAxisAngle( axis, angle ) );
return 1;
}
/*
> axis, angle = RL.QuaternionToAxisAngle( Quaternion q )
Get the rotation angle and axis for a given quaternion
- Success return Vector3, float
*/
int lmathQuaternionToAxisAngle( lua_State* L ) {
Quaternion q = uluaGetQuaternion( L, 1 );
float angle = 0.0;
Vector3 axis = { 0.0 };
QuaternionToAxisAngle( q, &axis, &angle );
uluaPushVector3( L, axis );
lua_pushnumber( L, angle );
return 2;
}
/*
> result = RL.QuaternionFromEuler( float pitch, float yaw, float roll )
Get the quaternion equivalent to Euler angles
NOTE: Rotation order is ZYX
- Success return Quaternion
*/
int lmathQuaternionFromEuler( lua_State* L ) {
float pitch = luaL_checknumber( L, 1 );
float yaw = luaL_checknumber( L, 2 );
float roll = luaL_checknumber( L, 3 );
uluaPushQuaternion( L, QuaternionFromEuler( pitch, yaw, roll ) );
return 1;
}
/*
> result = RL.QuaternionToEuler( Quaternion q )
Get the Euler angles equivalent to quaternion (roll, pitch, yaw)
NOTE: Angles are returned in a Vector3 struct in radians
- Success return Vector3
*/
int lmathQuaternionToEuler( lua_State* L ) {
Quaternion q = uluaGetQuaternion( L, 1 );
uluaPushVector3( L, QuaternionToEuler( q ) );
return 1;
}
/*
> result = RL.QuaternionTransform( Quaternion q, Matrix mat )
Transform a quaternion given a transformation matrix
- Success return Quaternion
*/
int lmathQuaternionTransform( lua_State* L ) {
Quaternion q = uluaGetQuaternion( L, 1 );
Matrix mat = uluaGetMatrix( L, 2 );
uluaPushQuaternion( L, QuaternionTransform( q, mat ) );
return 1;
}
/*
> result = RL.QuaternionEquals( Quaternion q1, Quaternion q2 )
Check whether two given quaternions are almost equal
- Success return int
*/
int lmathQuaternionEquals( lua_State* L ) {
Quaternion q1 = uluaGetQuaternion( L, 1 );
Quaternion q2 = uluaGetQuaternion( L, 2 );
lua_pushinteger( L, QuaternionEquals( q1, q2 ) );
return 1;
}