diff options
| author | jussi | 2024-11-20 18:23:42 +0200 |
|---|---|---|
| committer | jussi | 2024-11-20 18:23:42 +0200 |
| commit | 479726a5e468a2f4d0f9337f082889082e535bfb (patch) | |
| tree | d342d5ddd7ea69b1be343ae62dfd0ef1ddcef8a7 /include/raymath.h | |
| parent | cf2c2eb05bd5d30169771b0087df84a53124f766 (diff) | |
| download | reilua-enhanced-479726a5e468a2f4d0f9337f082889082e535bfb.tar.gz reilua-enhanced-479726a5e468a2f4d0f9337f082889082e535bfb.tar.bz2 reilua-enhanced-479726a5e468a2f4d0f9337f082889082e535bfb.zip | |
Initial switch to raylib 5.5.
Diffstat (limited to 'include/raymath.h')
| -rw-r--r-- | include/raymath.h | 817 |
1 files changed, 784 insertions, 33 deletions
diff --git a/include/raymath.h b/include/raymath.h index ff60170..e522113 100644 --- a/include/raymath.h +++ b/include/raymath.h @@ -1,6 +1,6 @@ /********************************************************************************************** * -* raymath v1.5 - Math functions to work with Vector2, Vector3, Matrix and Quaternions +* raymath v2.0 - Math functions to work with Vector2, Vector3, Matrix and Quaternions * * CONVENTIONS: * - Matrix structure is defined as row-major (memory layout) but parameters naming AND all @@ -12,7 +12,7 @@ * - Functions are always self-contained, no function use another raymath function inside, * required code is directly re-implemented inside * - Functions input parameters are always received by value (2 unavoidable exceptions) -* - Functions use always a "result" variable for return +* - Functions use always a "result" variable for return (except C++ operators) * - Functions are always defined inline * - Angles are always in radians (DEG2RAD/RAD2DEG macros provided for convenience) * - No compound literals used to make sure libray is compatible with C++ @@ -27,10 +27,12 @@ * Define static inline functions code, so #include header suffices for use. * This may use up lots of memory. * +* #define RAYMATH_DISABLE_CPP_OPERATORS +* Disables C++ operator overloads for raymath types. * * LICENSE: zlib/libpng * -* Copyright (c) 2015-2023 Ramon Santamaria (@raysan5) +* Copyright (c) 2015-2024 Ramon Santamaria (@raysan5) * * This software is provided "as-is", without any express or implied warranty. In no event * will the authors be held liable for any damages arising from the use of this software. @@ -59,7 +61,9 @@ // Function specifiers definition #if defined(RAYMATH_IMPLEMENTATION) #if defined(_WIN32) && defined(BUILD_LIBTYPE_SHARED) - #define RMAPI __declspec(dllexport) extern inline // We are building raylib as a Win32 shared library (.dll). + #define RMAPI __declspec(dllexport) extern inline // We are building raylib as a Win32 shared library (.dll) + #elif defined(BUILD_LIBTYPE_SHARED) + #define RMAPI __attribute__((visibility("default"))) // We are building raylib as a Unix shared library (.so/.dylib) #elif defined(_WIN32) && defined(USE_LIBTYPE_SHARED) #define RMAPI __declspec(dllimport) // We are using raylib as a Win32 shared library (.dll) #else @@ -75,6 +79,7 @@ #endif #endif + //---------------------------------------------------------------------------------- // Defines and Macros //---------------------------------------------------------------------------------- @@ -163,7 +168,7 @@ typedef struct float16 { float v[16]; } float16; -#include <math.h> // Required for: sinf(), cosf(), tan(), atan2f(), sqrtf(), floor(), fminf(), fmaxf(), fabs() +#include <math.h> // Required for: sinf(), cosf(), tan(), atan2f(), sqrtf(), floor(), fminf(), fmaxf(), fabsf() //---------------------------------------------------------------------------------- // Module Functions Definition - Utils math @@ -429,6 +434,28 @@ RMAPI Vector2 Vector2Reflect(Vector2 v, Vector2 normal) return result; } +// Get min value for each pair of components +RMAPI Vector2 Vector2Min(Vector2 v1, Vector2 v2) +{ + Vector2 result = { 0 }; + + result.x = fminf(v1.x, v2.x); + result.y = fminf(v1.y, v2.y); + + return result; +} + +// Get max value for each pair of components +RMAPI Vector2 Vector2Max(Vector2 v1, Vector2 v2) +{ + Vector2 result = { 0 }; + + result.x = fmaxf(v1.x, v2.x); + result.y = fmaxf(v1.y, v2.y); + + return result; +} + // Rotate vector by angle RMAPI Vector2 Vector2Rotate(Vector2 v, float angle) { @@ -492,18 +519,18 @@ RMAPI Vector2 Vector2ClampValue(Vector2 v, float min, float max) { length = sqrtf(length); + float scale = 1; // By default, 1 as the neutral element. if (length < min) { - float scale = min/length; - result.x = v.x*scale; - result.y = v.y*scale; + scale = min/length; } else if (length > max) { - float scale = max/length; - result.x = v.x*scale; - result.y = v.y*scale; + scale = max/length; } + + result.x = v.x*scale; + result.y = v.y*scale; } return result; @@ -522,6 +549,31 @@ RMAPI int Vector2Equals(Vector2 p, Vector2 q) return result; } +// Compute the direction of a refracted ray +// v: normalized direction of the incoming ray +// n: normalized normal vector of the interface of two optical media +// r: ratio of the refractive index of the medium from where the ray comes +// to the refractive index of the medium on the other side of the surface +RMAPI Vector2 Vector2Refract(Vector2 v, Vector2 n, float r) +{ + Vector2 result = { 0 }; + + float dot = v.x*n.x + v.y*n.y; + float d = 1.0f - r*r*(1.0f - dot*dot); + + if (d >= 0.0f) + { + d = sqrtf(d); + v.x = r*v.x - (r*dot + d)*n.x; + v.y = r*v.y - (r*dot + d)*n.y; + + result = v; + } + + return result; +} + + //---------------------------------------------------------------------------------- // Module Functions Definition - Vector3 math //---------------------------------------------------------------------------------- @@ -603,12 +655,12 @@ RMAPI Vector3 Vector3Perpendicular(Vector3 v) { Vector3 result = { 0 }; - float min = (float) fabs(v.x); + float min = fabsf(v.x); Vector3 cardinalAxis = {1.0f, 0.0f, 0.0f}; if (fabsf(v.y) < min) { - min = (float) fabs(v.y); + min = fabsf(v.y); Vector3 tmp = {0.0f, 1.0f, 0.0f}; cardinalAxis = tmp; } @@ -728,7 +780,7 @@ RMAPI Vector3 Vector3Normalize(Vector3 v) RMAPI Vector3 Vector3Project(Vector3 v1, Vector3 v2) { Vector3 result = { 0 }; - + float v1dv2 = (v1.x*v2.x + v1.y*v2.y + v1.z*v2.z); float v2dv2 = (v2.x*v2.x + v2.y*v2.y + v2.z*v2.z); @@ -745,7 +797,7 @@ RMAPI Vector3 Vector3Project(Vector3 v1, Vector3 v2) RMAPI Vector3 Vector3Reject(Vector3 v1, Vector3 v2) { Vector3 result = { 0 }; - + float v1dv2 = (v1.x*v2.x + v1.y*v2.y + v1.z*v2.z); float v2dv2 = (v2.x*v2.x + v2.y*v2.y + v2.z*v2.z); @@ -832,7 +884,7 @@ RMAPI Vector3 Vector3RotateByAxisAngle(Vector3 v, Vector3 axis, float angle) // Vector3Normalize(axis); float length = sqrtf(axis.x*axis.x + axis.y*axis.y + axis.z*axis.z); if (length == 0.0f) length = 1.0f; - float ilength = 1.0f / length; + float ilength = 1.0f/length; axis.x *= ilength; axis.y *= ilength; axis.z *= ilength; @@ -873,6 +925,27 @@ RMAPI Vector3 Vector3RotateByAxisAngle(Vector3 v, Vector3 axis, float angle) return result; } +// Move Vector towards target +RMAPI Vector3 Vector3MoveTowards(Vector3 v, Vector3 target, float maxDistance) +{ + Vector3 result = { 0 }; + + float dx = target.x - v.x; + float dy = target.y - v.y; + float dz = target.z - v.z; + float value = (dx*dx) + (dy*dy) + (dz*dz); + + if ((value == 0) || ((maxDistance >= 0) && (value <= maxDistance*maxDistance))) return target; + + float dist = sqrtf(value); + + result.x = v.x + dx/dist*maxDistance; + result.y = v.y + dy/dist*maxDistance; + result.z = v.z + dz/dist*maxDistance; + + return result; +} + // Calculate linear interpolation between two vectors RMAPI Vector3 Vector3Lerp(Vector3 v1, Vector3 v2, float amount) { @@ -885,6 +958,22 @@ RMAPI Vector3 Vector3Lerp(Vector3 v1, Vector3 v2, float amount) return result; } +// Calculate cubic hermite interpolation between two vectors and their tangents +// as described in the GLTF 2.0 specification: https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html#interpolation-cubic +RMAPI Vector3 Vector3CubicHermite(Vector3 v1, Vector3 tangent1, Vector3 v2, Vector3 tangent2, float amount) +{ + Vector3 result = { 0 }; + + float amountPow2 = amount*amount; + float amountPow3 = amount*amount*amount; + + result.x = (2*amountPow3 - 3*amountPow2 + 1)*v1.x + (amountPow3 - 2*amountPow2 + amount)*tangent1.x + (-2*amountPow3 + 3*amountPow2)*v2.x + (amountPow3 - amountPow2)*tangent2.x; + result.y = (2*amountPow3 - 3*amountPow2 + 1)*v1.y + (amountPow3 - 2*amountPow2 + amount)*tangent1.y + (-2*amountPow3 + 3*amountPow2)*v2.y + (amountPow3 - amountPow2)*tangent2.y; + result.z = (2*amountPow3 - 3*amountPow2 + 1)*v1.z + (amountPow3 - 2*amountPow2 + amount)*tangent1.z + (-2*amountPow3 + 3*amountPow2)*v2.z + (amountPow3 - amountPow2)*tangent2.z; + + return result; +} + // Calculate reflected vector to normal RMAPI Vector3 Vector3Reflect(Vector3 v, Vector3 normal) { @@ -1078,20 +1167,19 @@ RMAPI Vector3 Vector3ClampValue(Vector3 v, float min, float max) { length = sqrtf(length); + float scale = 1; // By default, 1 as the neutral element. if (length < min) { - float scale = min/length; - result.x = v.x*scale; - result.y = v.y*scale; - result.z = v.z*scale; + scale = min/length; } else if (length > max) { - float scale = max/length; - result.x = v.x*scale; - result.y = v.y*scale; - result.z = v.z*scale; + scale = max/length; } + + result.x = v.x*scale; + result.y = v.y*scale; + result.z = v.z*scale; } return result; @@ -1136,6 +1224,233 @@ RMAPI Vector3 Vector3Refract(Vector3 v, Vector3 n, float r) return result; } + +//---------------------------------------------------------------------------------- +// Module Functions Definition - Vector4 math +//---------------------------------------------------------------------------------- + +RMAPI Vector4 Vector4Zero(void) +{ + Vector4 result = { 0.0f, 0.0f, 0.0f, 0.0f }; + return result; +} + +RMAPI Vector4 Vector4One(void) +{ + Vector4 result = { 1.0f, 1.0f, 1.0f, 1.0f }; + return result; +} + +RMAPI Vector4 Vector4Add(Vector4 v1, Vector4 v2) +{ + Vector4 result = { + v1.x + v2.x, + v1.y + v2.y, + v1.z + v2.z, + v1.w + v2.w + }; + return result; +} + +RMAPI Vector4 Vector4AddValue(Vector4 v, float add) +{ + Vector4 result = { + v.x + add, + v.y + add, + v.z + add, + v.w + add + }; + return result; +} + +RMAPI Vector4 Vector4Subtract(Vector4 v1, Vector4 v2) +{ + Vector4 result = { + v1.x - v2.x, + v1.y - v2.y, + v1.z - v2.z, + v1.w - v2.w + }; + return result; +} + +RMAPI Vector4 Vector4SubtractValue(Vector4 v, float add) +{ + Vector4 result = { + v.x - add, + v.y - add, + v.z - add, + v.w - add + }; + return result; +} + +RMAPI float Vector4Length(Vector4 v) +{ + float result = sqrtf((v.x*v.x) + (v.y*v.y) + (v.z*v.z) + (v.w*v.w)); + return result; +} + +RMAPI float Vector4LengthSqr(Vector4 v) +{ + float result = (v.x*v.x) + (v.y*v.y) + (v.z*v.z) + (v.w*v.w); + return result; +} + +RMAPI float Vector4DotProduct(Vector4 v1, Vector4 v2) +{ + float result = (v1.x*v2.x + v1.y*v2.y + v1.z*v2.z + v1.w*v2.w); + return result; +} + +// Calculate distance between two vectors +RMAPI float Vector4Distance(Vector4 v1, Vector4 v2) +{ + float result = sqrtf( + (v1.x - v2.x)*(v1.x - v2.x) + (v1.y - v2.y)*(v1.y - v2.y) + + (v1.z - v2.z)*(v1.z - v2.z) + (v1.w - v2.w)*(v1.w - v2.w)); + return result; +} + +// Calculate square distance between two vectors +RMAPI float Vector4DistanceSqr(Vector4 v1, Vector4 v2) +{ + float result = + (v1.x - v2.x)*(v1.x - v2.x) + (v1.y - v2.y)*(v1.y - v2.y) + + (v1.z - v2.z)*(v1.z - v2.z) + (v1.w - v2.w)*(v1.w - v2.w); + + return result; +} + +RMAPI Vector4 Vector4Scale(Vector4 v, float scale) +{ + Vector4 result = { v.x*scale, v.y*scale, v.z*scale, v.w*scale }; + return result; +} + +// Multiply vector by vector +RMAPI Vector4 Vector4Multiply(Vector4 v1, Vector4 v2) +{ + Vector4 result = { v1.x*v2.x, v1.y*v2.y, v1.z*v2.z, v1.w*v2.w }; + return result; +} + +// Negate vector +RMAPI Vector4 Vector4Negate(Vector4 v) +{ + Vector4 result = { -v.x, -v.y, -v.z, -v.w }; + return result; +} + +// Divide vector by vector +RMAPI Vector4 Vector4Divide(Vector4 v1, Vector4 v2) +{ + Vector4 result = { v1.x/v2.x, v1.y/v2.y, v1.z/v2.z, v1.w/v2.w }; + return result; +} + +// Normalize provided vector +RMAPI Vector4 Vector4Normalize(Vector4 v) +{ + Vector4 result = { 0 }; + float length = sqrtf((v.x*v.x) + (v.y*v.y) + (v.z*v.z) + (v.w*v.w)); + + if (length > 0) + { + float ilength = 1.0f/length; + result.x = v.x*ilength; + result.y = v.y*ilength; + result.z = v.z*ilength; + result.w = v.w*ilength; + } + + return result; +} + +// Get min value for each pair of components +RMAPI Vector4 Vector4Min(Vector4 v1, Vector4 v2) +{ + Vector4 result = { 0 }; + + result.x = fminf(v1.x, v2.x); + result.y = fminf(v1.y, v2.y); + result.z = fminf(v1.z, v2.z); + result.w = fminf(v1.w, v2.w); + + return result; +} + +// Get max value for each pair of components +RMAPI Vector4 Vector4Max(Vector4 v1, Vector4 v2) +{ + Vector4 result = { 0 }; + + result.x = fmaxf(v1.x, v2.x); + result.y = fmaxf(v1.y, v2.y); + result.z = fmaxf(v1.z, v2.z); + result.w = fmaxf(v1.w, v2.w); + + return result; +} + +// Calculate linear interpolation between two vectors +RMAPI Vector4 Vector4Lerp(Vector4 v1, Vector4 v2, float amount) +{ + Vector4 result = { 0 }; + + result.x = v1.x + amount*(v2.x - v1.x); + result.y = v1.y + amount*(v2.y - v1.y); + result.z = v1.z + amount*(v2.z - v1.z); + result.w = v1.w + amount*(v2.w - v1.w); + + return result; +} + +// Move Vector towards target +RMAPI Vector4 Vector4MoveTowards(Vector4 v, Vector4 target, float maxDistance) +{ + Vector4 result = { 0 }; + + float dx = target.x - v.x; + float dy = target.y - v.y; + float dz = target.z - v.z; + float dw = target.w - v.w; + float value = (dx*dx) + (dy*dy) + (dz*dz) + (dw*dw); + + if ((value == 0) || ((maxDistance >= 0) && (value <= maxDistance*maxDistance))) return target; + + float dist = sqrtf(value); + + result.x = v.x + dx/dist*maxDistance; + result.y = v.y + dy/dist*maxDistance; + result.z = v.z + dz/dist*maxDistance; + result.w = v.w + dw/dist*maxDistance; + + return result; +} + +// Invert the given vector +RMAPI Vector4 Vector4Invert(Vector4 v) +{ + Vector4 result = { 1.0f/v.x, 1.0f/v.y, 1.0f/v.z, 1.0f/v.w }; + return result; +} + +// Check whether two given vectors are almost equal +RMAPI int Vector4Equals(Vector4 p, Vector4 q) +{ +#if !defined(EPSILON) + #define EPSILON 0.000001f +#endif + + int result = ((fabsf(p.x - q.x)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.x), fabsf(q.x))))) && + ((fabsf(p.y - q.y)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.y), fabsf(q.y))))) && + ((fabsf(p.z - q.z)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.z), fabsf(q.z))))) && + ((fabsf(p.w - q.w)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.w), fabsf(q.w))))); + return result; +} + + //---------------------------------------------------------------------------------- // Module Functions Definition - Matrix math //---------------------------------------------------------------------------------- @@ -1524,32 +1839,32 @@ RMAPI Matrix MatrixScale(float x, float y, float z) } // Get perspective projection matrix -RMAPI Matrix MatrixFrustum(double left, double right, double bottom, double top, double near, double far) +RMAPI Matrix MatrixFrustum(double left, double right, double bottom, double top, double nearPlane, double farPlane) { Matrix result = { 0 }; float rl = (float)(right - left); float tb = (float)(top - bottom); - float fn = (float)(far - near); + float fn = (float)(farPlane - nearPlane); - result.m0 = ((float)near*2.0f)/rl; + result.m0 = ((float)nearPlane*2.0f)/rl; result.m1 = 0.0f; result.m2 = 0.0f; result.m3 = 0.0f; result.m4 = 0.0f; - result.m5 = ((float)near*2.0f)/tb; + result.m5 = ((float)nearPlane*2.0f)/tb; result.m6 = 0.0f; result.m7 = 0.0f; result.m8 = ((float)right + (float)left)/rl; result.m9 = ((float)top + (float)bottom)/tb; - result.m10 = -((float)far + (float)near)/fn; + result.m10 = -((float)farPlane + (float)nearPlane)/fn; result.m11 = -1.0f; result.m12 = 0.0f; result.m13 = 0.0f; - result.m14 = -((float)far*(float)near*2.0f)/fn; + result.m14 = -((float)farPlane*(float)nearPlane*2.0f)/fn; result.m15 = 0.0f; return result; @@ -1901,6 +2216,32 @@ RMAPI Quaternion QuaternionSlerp(Quaternion q1, Quaternion q2, float amount) return result; } +// Calculate quaternion cubic spline interpolation using Cubic Hermite Spline algorithm +// as described in the GLTF 2.0 specification: https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html#interpolation-cubic +RMAPI Quaternion QuaternionCubicHermiteSpline(Quaternion q1, Quaternion outTangent1, Quaternion q2, Quaternion inTangent2, float t) +{ + float t2 = t*t; + float t3 = t2*t; + float h00 = 2*t3 - 3*t2 + 1; + float h10 = t3 - 2*t2 + t; + float h01 = -2*t3 + 3*t2; + float h11 = t3 - t2; + + Quaternion p0 = QuaternionScale(q1, h00); + Quaternion m0 = QuaternionScale(outTangent1, h10); + Quaternion p1 = QuaternionScale(q2, h01); + Quaternion m1 = QuaternionScale(inTangent2, h11); + + Quaternion result = { 0 }; + + result = QuaternionAdd(p0, m0); + result = QuaternionAdd(result, p1); + result = QuaternionAdd(result, m1); + result = QuaternionNormalize(result); + + return result; +} + // Calculate quaternion based on the rotation from one vector to another RMAPI Quaternion QuaternionFromVector3ToVector3(Vector3 from, Vector3 to) { @@ -1960,7 +2301,7 @@ RMAPI Quaternion QuaternionFromMatrix(Matrix mat) } float biggestVal = sqrtf(fourBiggestSquaredMinus1 + 1.0f)*0.5f; - float mult = 0.25f / biggestVal; + float mult = 0.25f/biggestVal; switch (biggestIndex) { @@ -2042,8 +2383,7 @@ RMAPI Quaternion QuaternionFromAxisAngle(Vector3 axis, float angle) float ilength = 0.0f; // Vector3Normalize(axis) - Vector3 v = axis; - length = sqrtf(v.x*v.x + v.y*v.y + v.z*v.z); + length = axisLength; if (length == 0.0f) length = 1.0f; ilength = 1.0f/length; axis.x *= ilength; @@ -2187,4 +2527,415 @@ RMAPI int QuaternionEquals(Quaternion p, Quaternion q) return result; } +// Decompose a transformation matrix into its rotational, translational and scaling components +RMAPI void MatrixDecompose(Matrix mat, Vector3 *translation, Quaternion *rotation, Vector3 *scale) +{ + // Extract translation. + translation->x = mat.m12; + translation->y = mat.m13; + translation->z = mat.m14; + + // Extract upper-left for determinant computation + const float a = mat.m0; + const float b = mat.m4; + const float c = mat.m8; + const float d = mat.m1; + const float e = mat.m5; + const float f = mat.m9; + const float g = mat.m2; + const float h = mat.m6; + const float i = mat.m10; + const float A = e*i - f*h; + const float B = f*g - d*i; + const float C = d*h - e*g; + + // Extract scale + const float det = a*A + b*B + c*C; + Vector3 abc = { a, b, c }; + Vector3 def = { d, e, f }; + Vector3 ghi = { g, h, i }; + + float scalex = Vector3Length(abc); + float scaley = Vector3Length(def); + float scalez = Vector3Length(ghi); + Vector3 s = { scalex, scaley, scalez }; + + if (det < 0) s = Vector3Negate(s); + + *scale = s; + + // Remove scale from the matrix if it is not close to zero + Matrix clone = mat; + if (!FloatEquals(det, 0)) + { + clone.m0 /= s.x; + clone.m4 /= s.x; + clone.m8 /= s.x; + clone.m1 /= s.y; + clone.m5 /= s.y; + clone.m9 /= s.y; + clone.m2 /= s.z; + clone.m6 /= s.z; + clone.m10 /= s.z; + + // Extract rotation + *rotation = QuaternionFromMatrix(clone); + } + else + { + // Set to identity if close to zero + *rotation = QuaternionIdentity(); + } +} + +#if defined(__cplusplus) && !defined(RAYMATH_DISABLE_CPP_OPERATORS) + +// Optional C++ math operators +//------------------------------------------------------------------------------- + +// Vector2 operators +static constexpr Vector2 Vector2Zeros = { 0, 0 }; +static constexpr Vector2 Vector2Ones = { 1, 1 }; +static constexpr Vector2 Vector2UnitX = { 1, 0 }; +static constexpr Vector2 Vector2UnitY = { 0, 1 }; + +inline Vector2 operator + (const Vector2& lhs, const Vector2& rhs) +{ + return Vector2Add(lhs, rhs); +} + +inline const Vector2& operator += (Vector2& lhs, const Vector2& rhs) +{ + lhs = Vector2Add(lhs, rhs); + return lhs; +} + +inline Vector2 operator - (const Vector2& lhs, const Vector2& rhs) +{ + return Vector2Subtract(lhs, rhs); +} + +inline const Vector2& operator -= (Vector2& lhs, const Vector2& rhs) +{ + lhs = Vector2Subtract(lhs, rhs); + return lhs; +} + +inline Vector2 operator * (const Vector2& lhs, const float& rhs) +{ + return Vector2Scale(lhs, rhs); +} + +inline const Vector2& operator *= (Vector2& lhs, const float& rhs) +{ + lhs = Vector2Scale(lhs, rhs); + return lhs; +} + +inline Vector2 operator * (const Vector2& lhs, const Vector2& rhs) +{ + return Vector2Multiply(lhs, rhs); +} + +inline const Vector2& operator *= (Vector2& lhs, const Vector2& rhs) +{ + lhs = Vector2Multiply(lhs, rhs); + return lhs; +} + +inline Vector2 operator * (const Vector2& lhs, const Matrix& rhs) +{ + return Vector2Transform(lhs, rhs); +} + +inline const Vector2& operator -= (Vector2& lhs, const Matrix& rhs) +{ + lhs = Vector2Transform(lhs, rhs); + return lhs; +} + +inline Vector2 operator / (const Vector2& lhs, const float& rhs) +{ + return Vector2Scale(lhs, 1.0f / rhs); +} + +inline const Vector2& operator /= (Vector2& lhs, const float& rhs) +{ + lhs = Vector2Scale(lhs, rhs); + return lhs; +} + +inline Vector2 operator / (const Vector2& lhs, const Vector2& rhs) +{ + return Vector2Divide(lhs, rhs); +} + +inline const Vector2& operator /= (Vector2& lhs, const Vector2& rhs) +{ + lhs = Vector2Divide(lhs, rhs); + return lhs; +} + +inline bool operator == (const Vector2& lhs, const Vector2& rhs) +{ + return FloatEquals(lhs.x, rhs.x) && FloatEquals(lhs.y, rhs.y); +} + +inline bool operator != (const Vector2& lhs, const Vector2& rhs) +{ + return !FloatEquals(lhs.x, rhs.x) || !FloatEquals(lhs.y, rhs.y); +} + +// Vector3 operators +static constexpr Vector3 Vector3Zeros = { 0, 0, 0 }; +static constexpr Vector3 Vector3Ones = { 1, 1, 1 }; +static constexpr Vector3 Vector3UnitX = { 1, 0, 0 }; +static constexpr Vector3 Vector3UnitY = { 0, 1, 0 }; +static constexpr Vector3 Vector3UnitZ = { 0, 0, 1 }; + +inline Vector3 operator + (const Vector3& lhs, const Vector3& rhs) +{ + return Vector3Add(lhs, rhs); +} + +inline const Vector3& operator += (Vector3& lhs, const Vector3& rhs) +{ + lhs = Vector3Add(lhs, rhs); + return lhs; +} + +inline Vector3 operator - (const Vector3& lhs, const Vector3& rhs) +{ + return Vector3Subtract(lhs, rhs); +} + +inline const Vector3& operator -= (Vector3& lhs, const Vector3& rhs) +{ + lhs = Vector3Subtract(lhs, rhs); + return lhs; +} + +inline Vector3 operator * (const Vector3& lhs, const float& rhs) +{ + return Vector3Scale(lhs, rhs); +} + +inline const Vector3& operator *= (Vector3& lhs, const float& rhs) +{ + lhs = Vector3Scale(lhs, rhs); + return lhs; +} + +inline Vector3 operator * (const Vector3& lhs, const Vector3& rhs) +{ + return Vector3Multiply(lhs, rhs); +} + +inline const Vector3& operator *= (Vector3& lhs, const Vector3& rhs) +{ + lhs = Vector3Multiply(lhs, rhs); + return lhs; +} + +inline Vector3 operator * (const Vector3& lhs, const Matrix& rhs) +{ + return Vector3Transform(lhs, rhs); +} + +inline const Vector3& operator -= (Vector3& lhs, const Matrix& rhs) +{ + lhs = Vector3Transform(lhs, rhs); + return lhs; +} + +inline Vector3 operator / (const Vector3& lhs, const float& rhs) +{ + return Vector3Scale(lhs, 1.0f / rhs); +} + +inline const Vector3& operator /= (Vector3& lhs, const float& rhs) +{ + lhs = Vector3Scale(lhs, rhs); + return lhs; +} + +inline Vector3 operator / (const Vector3& lhs, const Vector3& rhs) +{ + return Vector3Divide(lhs, rhs); +} + +inline const Vector3& operator /= (Vector3& lhs, const Vector3& rhs) +{ + lhs = Vector3Divide(lhs, rhs); + return lhs; +} + +inline bool operator == (const Vector3& lhs, const Vector3& rhs) +{ + return FloatEquals(lhs.x, rhs.x) && FloatEquals(lhs.y, rhs.y) && FloatEquals(lhs.z, rhs.z); +} + +inline bool operator != (const Vector3& lhs, const Vector3& rhs) +{ + return !FloatEquals(lhs.x, rhs.x) || !FloatEquals(lhs.y, rhs.y) || !FloatEquals(lhs.z, rhs.z); +} + +// Vector4 operators +static constexpr Vector4 Vector4Zeros = { 0, 0, 0, 0 }; +static constexpr Vector4 Vector4Ones = { 1, 1, 1, 1 }; +static constexpr Vector4 Vector4UnitX = { 1, 0, 0, 0 }; +static constexpr Vector4 Vector4UnitY = { 0, 1, 0, 0 }; +static constexpr Vector4 Vector4UnitZ = { 0, 0, 1, 0 }; +static constexpr Vector4 Vector4UnitW = { 0, 0, 0, 1 }; + +inline Vector4 operator + (const Vector4& lhs, const Vector4& rhs) +{ + return Vector4Add(lhs, rhs); +} + +inline const Vector4& operator += (Vector4& lhs, const Vector4& rhs) +{ + lhs = Vector4Add(lhs, rhs); + return lhs; +} + +inline Vector4 operator - (const Vector4& lhs, const Vector4& rhs) +{ + return Vector4Subtract(lhs, rhs); +} + +inline const Vector4& operator -= (Vector4& lhs, const Vector4& rhs) +{ + lhs = Vector4Subtract(lhs, rhs); + return lhs; +} + +inline Vector4 operator * (const Vector4& lhs, const float& rhs) +{ + return Vector4Scale(lhs, rhs); +} + +inline const Vector4& operator *= (Vector4& lhs, const float& rhs) +{ + lhs = Vector4Scale(lhs, rhs); + return lhs; +} + +inline Vector4 operator * (const Vector4& lhs, const Vector4& rhs) +{ + return Vector4Multiply(lhs, rhs); +} + +inline const Vector4& operator *= (Vector4& lhs, const Vector4& rhs) +{ + lhs = Vector4Multiply(lhs, rhs); + return lhs; +} + +inline Vector4 operator / (const Vector4& lhs, const float& rhs) +{ + return Vector4Scale(lhs, 1.0f / rhs); +} + +inline const Vector4& operator /= (Vector4& lhs, const float& rhs) +{ + lhs = Vector4Scale(lhs, rhs); + return lhs; +} + +inline Vector4 operator / (const Vector4& lhs, const Vector4& rhs) +{ + return Vector4Divide(lhs, rhs); +} + +inline const Vector4& operator /= (Vector4& lhs, const Vector4& rhs) +{ + lhs = Vector4Divide(lhs, rhs); + return lhs; +} + +inline bool operator == (const Vector4& lhs, const Vector4& rhs) +{ + return FloatEquals(lhs.x, rhs.x) && FloatEquals(lhs.y, rhs.y) && FloatEquals(lhs.z, rhs.z) && FloatEquals(lhs.w, rhs.w); +} + +inline bool operator != (const Vector4& lhs, const Vector4& rhs) +{ + return !FloatEquals(lhs.x, rhs.x) || !FloatEquals(lhs.y, rhs.y) || !FloatEquals(lhs.z, rhs.z) || !FloatEquals(lhs.w, rhs.w); +} + +// Quaternion operators +static constexpr Quaternion QuaternionZeros = { 0, 0, 0, 0 }; +static constexpr Quaternion QuaternionOnes = { 1, 1, 1, 1 }; +static constexpr Quaternion QuaternionUnitX = { 0, 0, 0, 1 }; + +inline Quaternion operator + (const Quaternion& lhs, const float& rhs) +{ + return QuaternionAddValue(lhs, rhs); +} + +inline const Quaternion& operator += (Quaternion& lhs, const float& rhs) +{ + lhs = QuaternionAddValue(lhs, rhs); + return lhs; +} + +inline Quaternion operator - (const Quaternion& lhs, const float& rhs) +{ + return QuaternionSubtractValue(lhs, rhs); +} + +inline const Quaternion& operator -= (Quaternion& lhs, const float& rhs) +{ + lhs = QuaternionSubtractValue(lhs, rhs); + return lhs; +} + +inline Quaternion operator * (const Quaternion& lhs, const Matrix& rhs) +{ + return QuaternionTransform(lhs, rhs); +} + +inline const Quaternion& operator *= (Quaternion& lhs, const Matrix& rhs) +{ + lhs = QuaternionTransform(lhs, rhs); + return lhs; +} + +// Matrix operators +inline Matrix operator + (const Matrix& lhs, const Matrix& rhs) +{ + return MatrixAdd(lhs, rhs); +} + +inline const Matrix& operator += (Matrix& lhs, const Matrix& rhs) +{ + lhs = MatrixAdd(lhs, rhs); + return lhs; +} + +inline Matrix operator - (const Matrix& lhs, const Matrix& rhs) +{ + return MatrixSubtract(lhs, rhs); +} + +inline const Matrix& operator -= (Matrix& lhs, const Matrix& rhs) +{ + lhs = MatrixSubtract(lhs, rhs); + return lhs; +} + +inline Matrix operator * (const Matrix& lhs, const Matrix& rhs) +{ + return MatrixMultiply(lhs, rhs); +} + +inline const Matrix& operator *= (Matrix& lhs, const Matrix& rhs) +{ + lhs = MatrixMultiply(lhs, rhs); + return lhs; +} +//------------------------------------------------------------------------------- +#endif // C++ operators + #endif // RAYMATH_H |
