diff options
author | Indrajith K L | 2022-12-03 17:00:20 +0530 |
---|---|---|
committer | Indrajith K L | 2022-12-03 17:00:20 +0530 |
commit | f5c4671bfbad96bf346bd7e9a21fc4317b4959df (patch) | |
tree | 2764fc62da58f2ba8da7ed341643fc359873142f /v_windows/v/old/vlib/math/complex/complex.v | |
download | cli-tools-windows-f5c4671bfbad96bf346bd7e9a21fc4317b4959df.tar.gz cli-tools-windows-f5c4671bfbad96bf346bd7e9a21fc4317b4959df.tar.bz2 cli-tools-windows-f5c4671bfbad96bf346bd7e9a21fc4317b4959df.zip |
Diffstat (limited to 'v_windows/v/old/vlib/math/complex/complex.v')
-rw-r--r-- | v_windows/v/old/vlib/math/complex/complex.v | 374 |
1 files changed, 374 insertions, 0 deletions
diff --git a/v_windows/v/old/vlib/math/complex/complex.v b/v_windows/v/old/vlib/math/complex/complex.v new file mode 100644 index 0000000..9fd7cc8 --- /dev/null +++ b/v_windows/v/old/vlib/math/complex/complex.v @@ -0,0 +1,374 @@ +// Copyright (c) 2019-2021 Alexander Medvednikov. All rights reserved. +// Use of this source code is governed by an MIT license +// that can be found in the LICENSE file. + +module complex + +import math + +pub struct Complex { +pub: + re f64 + im f64 +} + +pub fn complex(re f64, im f64) Complex { + return Complex{re, im} +} + +// To String method +pub fn (c Complex) str() string { + mut out := '${c.re:.6f}' + out += if c.im >= 0 { '+${c.im:.6f}' } else { '${c.im:.6f}' } + out += 'i' + return out +} + +// Complex Modulus value +// mod() and abs() return the same +pub fn (c Complex) abs() f64 { + return C.hypot(c.re, c.im) +} + +pub fn (c Complex) mod() f64 { + return c.abs() +} + +// Complex Angle +pub fn (c Complex) angle() f64 { + return math.atan2(c.im, c.re) +} + +// Complex Addition c1 + c2 +pub fn (c1 Complex) + (c2 Complex) Complex { + return Complex{c1.re + c2.re, c1.im + c2.im} +} + +// Complex Substraction c1 - c2 +pub fn (c1 Complex) - (c2 Complex) Complex { + return Complex{c1.re - c2.re, c1.im - c2.im} +} + +// Complex Multiplication c1 * c2 +pub fn (c1 Complex) * (c2 Complex) Complex { + return Complex{(c1.re * c2.re) + ((c1.im * c2.im) * -1), (c1.re * c2.im) + (c1.im * c2.re)} +} + +// Complex Division c1 / c2 +pub fn (c1 Complex) / (c2 Complex) Complex { + denom := (c2.re * c2.re) + (c2.im * c2.im) + return Complex{((c1.re * c2.re) + ((c1.im * -c2.im) * -1)) / denom, ((c1.re * -c2.im) + + (c1.im * c2.re)) / denom} +} + +// Complex Addition c1.add(c2) +pub fn (c1 Complex) add(c2 Complex) Complex { + return c1 + c2 +} + +// Complex Subtraction c1.subtract(c2) +pub fn (c1 Complex) subtract(c2 Complex) Complex { + return c1 - c2 +} + +// Complex Multiplication c1.multiply(c2) +pub fn (c1 Complex) multiply(c2 Complex) Complex { + return Complex{(c1.re * c2.re) + ((c1.im * c2.im) * -1), (c1.re * c2.im) + (c1.im * c2.re)} +} + +// Complex Division c1.divide(c2) +pub fn (c1 Complex) divide(c2 Complex) Complex { + denom := (c2.re * c2.re) + (c2.im * c2.im) + return Complex{((c1.re * c2.re) + ((c1.im * -c2.im) * -1)) / denom, ((c1.re * -c2.im) + + (c1.im * c2.re)) / denom} +} + +// Complex Conjugate +pub fn (c Complex) conjugate() Complex { + return Complex{c.re, -c.im} +} + +// Complex Additive Inverse +// Based on +// http://tutorial.math.lamar.edu/Extras/ComplexPrimer/Arithmetic.aspx +pub fn (c Complex) addinv() Complex { + return Complex{-c.re, -c.im} +} + +// Complex Multiplicative Inverse +// Based on +// http://tutorial.math.lamar.edu/Extras/ComplexPrimer/Arithmetic.aspx +pub fn (c Complex) mulinv() Complex { + return Complex{c.re / (c.re * c.re + c.im * c.im), -c.im / (c.re * c.re + c.im * c.im)} +} + +// Complex Power +// Based on +// https://www.khanacademy.org/math/precalculus/imaginary-and-complex-numbers/multiplying-and-dividing-complex-numbers-in-polar-form/a/complex-number-polar-form-review +pub fn (c Complex) pow(n f64) Complex { + r := math.pow(c.abs(), n) + angle := c.angle() + return Complex{r * math.cos(n * angle), r * math.sin(n * angle)} +} + +// Complex nth root +pub fn (c Complex) root(n f64) Complex { + return c.pow(1.0 / n) +} + +// Complex Exponential +// Using Euler's Identity +// Based on +// https://www.math.wisc.edu/~angenent/Free-Lecture-Notes/freecomplexnumbers.pdf +pub fn (c Complex) exp() Complex { + a := math.exp(c.re) + return Complex{a * math.cos(c.im), a * math.sin(c.im)} +} + +// Complex Natural Logarithm +// Based on +// http://www.chemistrylearning.com/logarithm-of-complex-number/ +pub fn (c Complex) ln() Complex { + return Complex{math.log(c.abs()), c.angle()} +} + +// Complex Log Base Complex +// Based on +// http://www.milefoot.com/math/complex/summaryops.htm +pub fn (c Complex) log(base Complex) Complex { + return base.ln().divide(c.ln()) +} + +// Complex Argument +// Based on +// http://mathworld.wolfram.com/ComplexArgument.html +pub fn (c Complex) arg() f64 { + return math.atan2(c.im, c.re) +} + +// Complex raised to Complex Power +// Based on +// http://mathworld.wolfram.com/ComplexExponentiation.html +pub fn (c Complex) cpow(p Complex) Complex { + a := c.arg() + b := math.pow(c.re, 2) + math.pow(c.im, 2) + d := p.re * a + (1.0 / 2) * p.im * math.log(b) + t1 := math.pow(b, p.re / 2) * math.exp(-p.im * a) + return Complex{t1 * math.cos(d), t1 * math.sin(d)} +} + +// Complex Sin +// Based on +// http://www.milefoot.com/math/complex/functionsofi.htm +pub fn (c Complex) sin() Complex { + return Complex{math.sin(c.re) * math.cosh(c.im), math.cos(c.re) * math.sinh(c.im)} +} + +// Complex Cosine +// Based on +// http://www.milefoot.com/math/complex/functionsofi.htm +pub fn (c Complex) cos() Complex { + return Complex{math.cos(c.re) * math.cosh(c.im), -(math.sin(c.re) * math.sinh(c.im))} +} + +// Complex Tangent +// Based on +// http://www.milefoot.com/math/complex/functionsofi.htm +pub fn (c Complex) tan() Complex { + return c.sin().divide(c.cos()) +} + +// Complex Cotangent +// Based on +// http://www.suitcaseofdreams.net/Trigonometric_Functions.htm +pub fn (c Complex) cot() Complex { + return c.cos().divide(c.sin()) +} + +// Complex Secant +// Based on +// http://www.suitcaseofdreams.net/Trigonometric_Functions.htm +pub fn (c Complex) sec() Complex { + return complex(1, 0).divide(c.cos()) +} + +// Complex Cosecant +// Based on +// http://www.suitcaseofdreams.net/Trigonometric_Functions.htm +pub fn (c Complex) csc() Complex { + return complex(1, 0).divide(c.sin()) +} + +// Complex Arc Sin / Sin Inverse +// Based on +// http://www.milefoot.com/math/complex/summaryops.htm +pub fn (c Complex) asin() Complex { + return complex(0, -1).multiply(complex(0, 1).multiply(c).add(complex(1, 0).subtract(c.pow(2)).root(2)).ln()) +} + +// Complex Arc Consine / Consine Inverse +// Based on +// http://www.milefoot.com/math/complex/summaryops.htm +pub fn (c Complex) acos() Complex { + return complex(0, -1).multiply(c.add(complex(0, 1).multiply(complex(1, 0).subtract(c.pow(2)).root(2))).ln()) +} + +// Complex Arc Tangent / Tangent Inverse +// Based on +// http://www.milefoot.com/math/complex/summaryops.htm +pub fn (c Complex) atan() Complex { + i := complex(0, 1) + return complex(0, 1.0 / 2).multiply(i.add(c).divide(i.subtract(c)).ln()) +} + +// Complex Arc Cotangent / Cotangent Inverse +// Based on +// http://www.suitcaseofdreams.net/Inverse_Functions.htm +pub fn (c Complex) acot() Complex { + return complex(1, 0).divide(c).atan() +} + +// Complex Arc Secant / Secant Inverse +// Based on +// http://www.suitcaseofdreams.net/Inverse_Functions.htm +pub fn (c Complex) asec() Complex { + return complex(1, 0).divide(c).acos() +} + +// Complex Arc Cosecant / Cosecant Inverse +// Based on +// http://www.suitcaseofdreams.net/Inverse_Functions.htm +pub fn (c Complex) acsc() Complex { + return complex(1, 0).divide(c).asin() +} + +// Complex Hyperbolic Sin +// Based on +// http://www.milefoot.com/math/complex/functionsofi.htm +pub fn (c Complex) sinh() Complex { + return Complex{math.cos(c.im) * math.sinh(c.re), math.sin(c.im) * math.cosh(c.re)} +} + +// Complex Hyperbolic Cosine +// Based on +// http://www.milefoot.com/math/complex/functionsofi.htm +pub fn (c Complex) cosh() Complex { + return Complex{math.cos(c.im) * math.cosh(c.re), math.sin(c.im) * math.sinh(c.re)} +} + +// Complex Hyperbolic Tangent +// Based on +// http://www.milefoot.com/math/complex/functionsofi.htm +pub fn (c Complex) tanh() Complex { + return c.sinh().divide(c.cosh()) +} + +// Complex Hyperbolic Cotangent +// Based on +// http://www.suitcaseofdreams.net/Hyperbolic_Functions.htm +pub fn (c Complex) coth() Complex { + return c.cosh().divide(c.sinh()) +} + +// Complex Hyperbolic Secant +// Based on +// http://www.suitcaseofdreams.net/Hyperbolic_Functions.htm +pub fn (c Complex) sech() Complex { + return complex(1, 0).divide(c.cosh()) +} + +// Complex Hyperbolic Cosecant +// Based on +// http://www.suitcaseofdreams.net/Hyperbolic_Functions.htm +pub fn (c Complex) csch() Complex { + return complex(1, 0).divide(c.sinh()) +} + +// Complex Hyperbolic Arc Sin / Sin Inverse +// Based on +// http://www.suitcaseofdreams.net/Inverse__Hyperbolic_Functions.htm +pub fn (c Complex) asinh() Complex { + return c.add(c.pow(2).add(complex(1, 0)).root(2)).ln() +} + +// Complex Hyperbolic Arc Consine / Consine Inverse +// Based on +// http://www.suitcaseofdreams.net/Inverse__Hyperbolic_Functions.htm +pub fn (c Complex) acosh() Complex { + if c.re > 1 { + return c.add(c.pow(2).subtract(complex(1, 0)).root(2)).ln() + } else { + one := complex(1, 0) + return c.add(c.add(one).root(2).multiply(c.subtract(one).root(2))).ln() + } +} + +// Complex Hyperbolic Arc Tangent / Tangent Inverse +// Based on +// http://www.suitcaseofdreams.net/Inverse__Hyperbolic_Functions.htm +pub fn (c Complex) atanh() Complex { + one := complex(1, 0) + if c.re < 1 { + return complex(1.0 / 2, 0).multiply(one.add(c).divide(one.subtract(c)).ln()) + } else { + return complex(1.0 / 2, 0).multiply(one.add(c).ln().subtract(one.subtract(c).ln())) + } +} + +// Complex Hyperbolic Arc Cotangent / Cotangent Inverse +// Based on +// http://www.suitcaseofdreams.net/Inverse__Hyperbolic_Functions.htm +pub fn (c Complex) acoth() Complex { + one := complex(1, 0) + if c.re < 0 || c.re > 1 { + return complex(1.0 / 2, 0).multiply(c.add(one).divide(c.subtract(one)).ln()) + } else { + div := one.divide(c) + return complex(1.0 / 2, 0).multiply(one.add(div).ln().subtract(one.subtract(div).ln())) + } +} + +// Complex Hyperbolic Arc Secant / Secant Inverse +// Based on +// http://www.suitcaseofdreams.net/Inverse__Hyperbolic_Functions.htm +// For certain scenarios, Result mismatch in crossverification with Wolfram Alpha - analysis pending +// pub fn (c Complex) asech() Complex { +// one := complex(1,0) +// if(c.re < -1.0) { +// return one.subtract( +// one.subtract( +// c.pow(2) +// ) +// .root(2) +// ) +// .divide(c) +// .ln() +// } +// else { +// return one.add( +// one.subtract( +// c.pow(2) +// ) +// .root(2) +// ) +// .divide(c) +// .ln() +// } +// } + +// Complex Hyperbolic Arc Cosecant / Cosecant Inverse +// Based on +// http://www.suitcaseofdreams.net/Inverse__Hyperbolic_Functions.htm +pub fn (c Complex) acsch() Complex { + one := complex(1, 0) + if c.re < 0 { + return one.subtract(one.add(c.pow(2)).root(2)).divide(c).ln() + } else { + return one.add(one.add(c.pow(2)).root(2)).divide(c).ln() + } +} + +// Complex Equals +pub fn (c1 Complex) equals(c2 Complex) bool { + return (c1.re == c2.re) && (c1.im == c2.im) +} |