aboutsummaryrefslogtreecommitdiff
path: root/v_windows/v/old/vlib/math/fractions/approximations.v
diff options
context:
space:
mode:
authorIndrajith K L2022-12-03 17:00:20 +0530
committerIndrajith K L2022-12-03 17:00:20 +0530
commitf5c4671bfbad96bf346bd7e9a21fc4317b4959df (patch)
tree2764fc62da58f2ba8da7ed341643fc359873142f /v_windows/v/old/vlib/math/fractions/approximations.v
downloadcli-tools-windows-f5c4671bfbad96bf346bd7e9a21fc4317b4959df.tar.gz
cli-tools-windows-f5c4671bfbad96bf346bd7e9a21fc4317b4959df.tar.bz2
cli-tools-windows-f5c4671bfbad96bf346bd7e9a21fc4317b4959df.zip
Adds most of the toolsHEADmaster
Diffstat (limited to 'v_windows/v/old/vlib/math/fractions/approximations.v')
-rw-r--r--v_windows/v/old/vlib/math/fractions/approximations.v119
1 files changed, 119 insertions, 0 deletions
diff --git a/v_windows/v/old/vlib/math/fractions/approximations.v b/v_windows/v/old/vlib/math/fractions/approximations.v
new file mode 100644
index 0000000..dd4f855
--- /dev/null
+++ b/v_windows/v/old/vlib/math/fractions/approximations.v
@@ -0,0 +1,119 @@
+// Copyright (c) 2019-2021 Alexander Medvednikov. All rights reserved.
+// Use of this source code is governed by an MIT license
+// that can be found in the LICENSE file.
+module fractions
+
+import math
+
+const (
+ default_eps = 1.0e-4
+ max_iterations = 50
+ zero = fraction(0, 1)
+)
+
+// ------------------------------------------------------------------------
+// Unwrapped evaluation methods for fast evaluation of continued fractions.
+// ------------------------------------------------------------------------
+// We need these functions because the evaluation of continued fractions
+// always has to be done from the end. Also, the numerator-denominator pairs
+// are generated from front to end. This means building a result from a
+// previous one isn't possible. So we need unrolled versions to ensure that
+// we don't take too much of a performance penalty by calling eval_cf
+// several times.
+// ------------------------------------------------------------------------
+// eval_1 returns the result of evaluating a continued fraction series of length 1
+fn eval_1(whole i64, d []i64) Fraction {
+ return fraction(whole * d[0] + 1, d[0])
+}
+
+// eval_2 returns the result of evaluating a continued fraction series of length 2
+fn eval_2(whole i64, d []i64) Fraction {
+ den := d[0] * d[1] + 1
+ return fraction(whole * den + d[1], den)
+}
+
+// eval_3 returns the result of evaluating a continued fraction series of length 3
+fn eval_3(whole i64, d []i64) Fraction {
+ d1d2_plus_n2 := d[1] * d[2] + 1
+ den := d[0] * d1d2_plus_n2 + d[2]
+ return fraction(whole * den + d1d2_plus_n2, den)
+}
+
+// eval_cf evaluates a continued fraction series and returns a Fraction.
+fn eval_cf(whole i64, den []i64) Fraction {
+ count := den.len
+ // Offload some small-scale calculations
+ // to dedicated functions
+ match count {
+ 1 {
+ return eval_1(whole, den)
+ }
+ 2 {
+ return eval_2(whole, den)
+ }
+ 3 {
+ return eval_3(whole, den)
+ }
+ else {
+ last := count - 1
+ mut n := i64(1)
+ mut d := den[last]
+ // The calculations are done from back to front
+ for index := count - 2; index >= 0; index-- {
+ t := d
+ d = den[index] * d + n
+ n = t
+ }
+ return fraction(d * whole + n, d)
+ }
+ }
+}
+
+// approximate returns a Fraction that approcimates the given value to
+// within the default epsilon value (1.0e-4). This means the result will
+// be accurate to 3 places after the decimal.
+pub fn approximate(val f64) Fraction {
+ return approximate_with_eps(val, fractions.default_eps)
+}
+
+// approximate_with_eps returns a Fraction
+pub fn approximate_with_eps(val f64, eps f64) Fraction {
+ if val == 0.0 {
+ return fractions.zero
+ }
+ if eps < 0.0 {
+ panic('Epsilon value cannot be negative.')
+ }
+ if math.fabs(val) > math.max_i64 {
+ panic('Value out of range.')
+ }
+ // The integer part is separated first. Then we process the fractional
+ // part to generate numerators and denominators in tandem.
+ whole := i64(val)
+ mut frac := val - f64(whole)
+ // Quick exit for integers
+ if frac == 0.0 {
+ return fraction(whole, 1)
+ }
+ mut d := []i64{}
+ mut partial := fractions.zero
+ // We must complete the approximation within the maximum number of
+ // itertations allowed. If we can't panic.
+ // Empirically tested: the hardest constant to approximate is the
+ // golden ratio (math.phi) and for f64s, it only needs 38 iterations.
+ for _ in 0 .. fractions.max_iterations {
+ // We calculate the reciprocal. That's why the numerator is
+ // always 1.
+ frac = 1.0 / frac
+ den := i64(frac)
+ d << den
+ // eval_cf is called often so it needs to be performant
+ partial = eval_cf(whole, d)
+ // Check if we're done
+ if math.fabs(val - partial.f64()) < eps {
+ return partial
+ }
+ frac -= f64(den)
+ }
+ panic("Couldn't converge. Please create an issue on https://github.com/vlang/v")
+}