aboutsummaryrefslogtreecommitdiff
path: root/v_windows/v/old/vlib/math/stats/stats_test.v
diff options
context:
space:
mode:
authorIndrajith K L2022-12-03 17:00:20 +0530
committerIndrajith K L2022-12-03 17:00:20 +0530
commitf5c4671bfbad96bf346bd7e9a21fc4317b4959df (patch)
tree2764fc62da58f2ba8da7ed341643fc359873142f /v_windows/v/old/vlib/math/stats/stats_test.v
downloadcli-tools-windows-f5c4671bfbad96bf346bd7e9a21fc4317b4959df.tar.gz
cli-tools-windows-f5c4671bfbad96bf346bd7e9a21fc4317b4959df.tar.bz2
cli-tools-windows-f5c4671bfbad96bf346bd7e9a21fc4317b4959df.zip
Adds most of the toolsHEADmaster
Diffstat (limited to 'v_windows/v/old/vlib/math/stats/stats_test.v')
-rw-r--r--v_windows/v/old/vlib/math/stats/stats_test.v269
1 files changed, 269 insertions, 0 deletions
diff --git a/v_windows/v/old/vlib/math/stats/stats_test.v b/v_windows/v/old/vlib/math/stats/stats_test.v
new file mode 100644
index 0000000..c18daff
--- /dev/null
+++ b/v_windows/v/old/vlib/math/stats/stats_test.v
@@ -0,0 +1,269 @@
+import math.stats
+import math
+
+fn test_freq() {
+ // Tests were also verified on Wolfram Alpha
+ data := [f64(10.0), f64(10.0), f64(5.9), f64(2.7)]
+ mut o := stats.freq(data, 10.0)
+ assert o == 2
+ o = stats.freq(data, 2.7)
+ assert o == 1
+ o = stats.freq(data, 15)
+ assert o == 0
+}
+
+fn tst_res(str1 string, str2 string) bool {
+ if (math.abs(str1.f64() - str2.f64())) < 1e-5 {
+ return true
+ }
+ return false
+}
+
+fn test_mean() {
+ // Tests were also verified on Wolfram Alpha
+ mut data := [f64(10.0), f64(4.45), f64(5.9), f64(2.7)]
+ mut o := stats.mean(data)
+ // Some issue with precision comparison in f64 using == operator hence serializing to string
+ assert tst_res(o.str(), '5.762500')
+ data = [f64(-3.0), f64(67.31), f64(4.4), f64(1.89)]
+ o = stats.mean(data)
+ // Some issue with precision comparison in f64 using == operator hence serializing to string
+ assert tst_res(o.str(), '17.650000')
+ data = [f64(12.0), f64(7.88), f64(76.122), f64(54.83)]
+ o = stats.mean(data)
+ // Some issue with precision comparison in f64 using == operator hence serializing to string
+ assert tst_res(o.str(), '37.708000')
+}
+
+fn test_geometric_mean() {
+ // Tests were also verified on Wolfram Alpha
+ mut data := [f64(10.0), f64(4.45), f64(5.9), f64(2.7)]
+ mut o := stats.geometric_mean(data)
+ // Some issue with precision comparison in f64 using == operator hence serializing to string
+ assert tst_res(o.str(), '5.15993')
+ data = [f64(-3.0), f64(67.31), f64(4.4), f64(1.89)]
+ o = stats.geometric_mean(data)
+ // Some issue with precision comparison in f64 using == operator hence serializing to string
+ assert o.str() == 'nan' || o.str() == '-nan' || o.str() == '-1.#IND00' || o == f64(0)
+ || o.str() == '-nan(ind)' // Because in math it yields a complex number
+ data = [f64(12.0), f64(7.88), f64(76.122), f64(54.83)]
+ o = stats.geometric_mean(data)
+ // Some issue with precision comparison in f64 using == operator hence serializing to string
+ assert tst_res(o.str(), '25.064496')
+}
+
+fn test_harmonic_mean() {
+ // Tests were also verified on Wolfram Alpha
+ mut data := [f64(10.0), f64(4.45), f64(5.9), f64(2.7)]
+ mut o := stats.harmonic_mean(data)
+ // Some issue with precision comparison in f64 using == operator hence serializing to string
+ assert tst_res(o.str(), '4.626519')
+ data = [f64(-3.0), f64(67.31), f64(4.4), f64(1.89)]
+ o = stats.harmonic_mean(data)
+ // Some issue with precision comparison in f64 using == operator hence serializing to string
+ assert tst_res(o.str(), '9.134577')
+ data = [f64(12.0), f64(7.88), f64(76.122), f64(54.83)]
+ o = stats.harmonic_mean(data)
+ // Some issue with precision comparison in f64 using == operator hence serializing to string
+ assert tst_res(o.str(), '16.555477')
+}
+
+fn test_median() {
+ // Tests were also verified on Wolfram Alpha
+ // Assumes sorted array
+
+ // Even
+ mut data := [f64(2.7), f64(4.45), f64(5.9), f64(10.0)]
+ mut o := stats.median(data)
+ // Some issue with precision comparison in f64 using == operator hence serializing to string
+ assert tst_res(o.str(), '5.175000')
+ data = [f64(-3.0), f64(1.89), f64(4.4), f64(67.31)]
+ o = stats.median(data)
+ // Some issue with precision comparison in f64 using == operator hence serializing to string
+ assert tst_res(o.str(), '3.145000')
+ data = [f64(7.88), f64(12.0), f64(54.83), f64(76.122)]
+ o = stats.median(data)
+ // Some issue with precision comparison in f64 using == operator hence serializing to string
+ assert tst_res(o.str(), '33.415000')
+
+ // Odd
+ data = [f64(2.7), f64(4.45), f64(5.9), f64(10.0), f64(22)]
+ o = stats.median(data)
+ assert o == f64(5.9)
+ data = [f64(-3.0), f64(1.89), f64(4.4), f64(9), f64(67.31)]
+ o = stats.median(data)
+ assert o == f64(4.4)
+ data = [f64(7.88), f64(3.3), f64(12.0), f64(54.83), f64(76.122)]
+ o = stats.median(data)
+ assert o == f64(12.0)
+}
+
+fn test_mode() {
+ // Tests were also verified on Wolfram Alpha
+ mut data := [f64(2.7), f64(2.7), f64(4.45), f64(5.9), f64(10.0)]
+ mut o := stats.mode(data)
+ assert o == f64(2.7)
+ data = [f64(-3.0), f64(1.89), f64(1.89), f64(1.89), f64(9), f64(4.4), f64(4.4), f64(9),
+ f64(67.31),
+ ]
+ o = stats.mode(data)
+ assert o == f64(1.89)
+ // Testing greedy nature
+ data = [f64(2.0), f64(4.0), f64(2.0), f64(4.0)]
+ o = stats.mode(data)
+ assert o == f64(2.0)
+}
+
+fn test_rms() {
+ // Tests were also verified on Wolfram Alpha
+ mut data := [f64(10.0), f64(4.45), f64(5.9), f64(2.7)]
+ mut o := stats.rms(data)
+ // Some issue with precision comparison in f64 using == operator hence serializing to string
+ assert tst_res(o.str(), '6.362046')
+ data = [f64(-3.0), f64(67.31), f64(4.4), f64(1.89)]
+ o = stats.rms(data)
+ // Some issue with precision comparison in f64 using == operator hence serializing to string
+ assert tst_res(o.str(), '33.773393')
+ data = [f64(12.0), f64(7.88), f64(76.122), f64(54.83)]
+ o = stats.rms(data)
+ // Some issue with precision comparison in f64 using == operator hence serializing to string
+ assert tst_res(o.str(), '47.452561')
+}
+
+fn test_population_variance() {
+ // Tests were also verified on Wolfram Alpha
+ mut data := [f64(10.0), f64(4.45), f64(5.9), f64(2.7)]
+ mut o := stats.population_variance(data)
+ // Some issue with precision comparison in f64 using == operator hence serializing to string
+ assert tst_res(o.str(), '7.269219')
+ data = [f64(-3.0), f64(67.31), f64(4.4), f64(1.89)]
+ o = stats.population_variance(data)
+ // Some issue with precision comparison in f64 using == operator hence serializing to string
+ assert tst_res(o.str(), '829.119550')
+ data = [f64(12.0), f64(7.88), f64(76.122), f64(54.83)]
+ o = stats.population_variance(data)
+ // Some issue with precision comparison in f64 using == operator hence serializing to string
+ assert tst_res(o.str(), '829.852282')
+}
+
+fn test_sample_variance() {
+ // Tests were also verified on Wolfram Alpha
+ mut data := [f64(10.0), f64(4.45), f64(5.9), f64(2.7)]
+ mut o := stats.sample_variance(data)
+ // Some issue with precision comparison in f64 using == operator hence serializing to string
+ assert tst_res(o.str(), '9.692292')
+ data = [f64(-3.0), f64(67.31), f64(4.4), f64(1.89)]
+ o = stats.sample_variance(data)
+ // Some issue with precision comparison in f64 using == operator hence serializing to string
+ assert tst_res(o.str(), '1105.492733')
+ data = [f64(12.0), f64(7.88), f64(76.122), f64(54.83)]
+ o = stats.sample_variance(data)
+ // Some issue with precision comparison in f64 using == operator hence serializing to string
+ assert tst_res(o.str(), '1106.469709')
+}
+
+fn test_population_stddev() {
+ // Tests were also verified on Wolfram Alpha
+ mut data := [f64(10.0), f64(4.45), f64(5.9), f64(2.7)]
+ mut o := stats.population_stddev(data)
+ // Some issue with precision comparison in f64 using == operator hence serializing to string
+ assert tst_res(o.str(), '2.696149')
+ data = [f64(-3.0), f64(67.31), f64(4.4), f64(1.89)]
+ o = stats.population_stddev(data)
+ // Some issue with precision comparison in f64 using == operator hence serializing to string
+ assert tst_res(o.str(), '28.794436')
+ data = [f64(12.0), f64(7.88), f64(76.122), f64(54.83)]
+ o = stats.population_stddev(data)
+ // Some issue with precision comparison in f64 using == operator hence serializing to string
+ assert tst_res(o.str(), '28.807157')
+}
+
+fn test_sample_stddev() {
+ // Tests were also verified on Wolfram Alpha
+ mut data := [f64(10.0), f64(4.45), f64(5.9), f64(2.7)]
+ mut o := stats.sample_stddev(data)
+ // Some issue with precision comparison in f64 using == operator hence serializing to string
+ assert tst_res(o.str(), '3.113245')
+ data = [f64(-3.0), f64(67.31), f64(4.4), f64(1.89)]
+ o = stats.sample_stddev(data)
+ // Some issue with precision comparison in f64 using == operator hence serializing to string
+ assert tst_res(o.str(), '33.248951')
+ data = [f64(12.0), f64(7.88), f64(76.122), f64(54.83)]
+ o = stats.sample_stddev(data)
+ // Some issue with precision comparison in f64 using == operator hence serializing to string
+ assert tst_res(o.str(), '33.263639')
+}
+
+fn test_mean_absdev() {
+ // Tests were also verified on Wolfram Alpha
+ mut data := [f64(10.0), f64(4.45), f64(5.9), f64(2.7)]
+ mut o := stats.mean_absdev(data)
+ // Some issue with precision comparison in f64 using == operator hence serializing to string
+ assert tst_res(o.str(), '2.187500')
+ data = [f64(-3.0), f64(67.31), f64(4.4), f64(1.89)]
+ o = stats.mean_absdev(data)
+ // Some issue with precision comparison in f64 using == operator hence serializing to string
+ assert tst_res(o.str(), '24.830000')
+ data = [f64(12.0), f64(7.88), f64(76.122), f64(54.83)]
+ o = stats.mean_absdev(data)
+ // Some issue with precision comparison in f64 using == operator hence serializing to string
+ assert tst_res(o.str(), '27.768000')
+}
+
+fn test_min() {
+ // Tests were also verified on Wolfram Alpha
+ mut data := [f64(10.0), f64(4.45), f64(5.9), f64(2.7)]
+ mut o := stats.min(data)
+ assert o == f64(2.7)
+ data = [f64(-3.0), f64(67.31), f64(4.4), f64(1.89)]
+ o = stats.min(data)
+ assert o == f64(-3.0)
+ data = [f64(12.0), f64(7.88), f64(76.122), f64(54.83)]
+ o = stats.min(data)
+ assert o == f64(7.88)
+}
+
+fn test_max() {
+ // Tests were also verified on Wolfram Alpha
+ mut data := [f64(10.0), f64(4.45), f64(5.9), f64(2.7)]
+ mut o := stats.max(data)
+ assert o == f64(10.0)
+ data = [f64(-3.0), f64(67.31), f64(4.4), f64(1.89)]
+ o = stats.max(data)
+ assert o == f64(67.31)
+ data = [f64(12.0), f64(7.88), f64(76.122), f64(54.83)]
+ o = stats.max(data)
+ assert o == f64(76.122)
+}
+
+fn test_range() {
+ // Tests were also verified on Wolfram Alpha
+ mut data := [f64(10.0), f64(4.45), f64(5.9), f64(2.7)]
+ mut o := stats.range(data)
+ assert o == f64(7.3)
+ data = [f64(-3.0), f64(67.31), f64(4.4), f64(1.89)]
+ o = stats.range(data)
+ assert o == f64(70.31)
+ data = [f64(12.0), f64(7.88), f64(76.122), f64(54.83)]
+ o = stats.range(data)
+ assert o == f64(68.242)
+}
+
+fn test_passing_empty() {
+ data := []f64{}
+ assert stats.freq(data, 0) == 0
+ assert stats.mean(data) == f64(0)
+ assert stats.geometric_mean(data) == f64(0)
+ assert stats.harmonic_mean(data) == f64(0)
+ assert stats.median(data) == f64(0)
+ assert stats.mode(data) == f64(0)
+ assert stats.rms(data) == f64(0)
+ assert stats.population_variance(data) == f64(0)
+ assert stats.sample_variance(data) == f64(0)
+ assert stats.population_stddev(data) == f64(0)
+ assert stats.sample_stddev(data) == f64(0)
+ assert stats.mean_absdev(data) == f64(0)
+ assert stats.min(data) == f64(0)
+ assert stats.max(data) == f64(0)
+ assert stats.range(data) == f64(0)
+}