aboutsummaryrefslogtreecommitdiff
path: root/v_windows/v/old/vlib/strconv/utilities.v
diff options
context:
space:
mode:
authorIndrajith K L2022-12-03 17:00:20 +0530
committerIndrajith K L2022-12-03 17:00:20 +0530
commitf5c4671bfbad96bf346bd7e9a21fc4317b4959df (patch)
tree2764fc62da58f2ba8da7ed341643fc359873142f /v_windows/v/old/vlib/strconv/utilities.v
downloadcli-tools-windows-f5c4671bfbad96bf346bd7e9a21fc4317b4959df.tar.gz
cli-tools-windows-f5c4671bfbad96bf346bd7e9a21fc4317b4959df.tar.bz2
cli-tools-windows-f5c4671bfbad96bf346bd7e9a21fc4317b4959df.zip
Adds most of the toolsHEADmaster
Diffstat (limited to 'v_windows/v/old/vlib/strconv/utilities.v')
-rw-r--r--v_windows/v/old/vlib/strconv/utilities.v556
1 files changed, 556 insertions, 0 deletions
diff --git a/v_windows/v/old/vlib/strconv/utilities.v b/v_windows/v/old/vlib/strconv/utilities.v
new file mode 100644
index 0000000..2098a73
--- /dev/null
+++ b/v_windows/v/old/vlib/strconv/utilities.v
@@ -0,0 +1,556 @@
+module strconv
+
+import math.bits
+// import math
+
+/*
+f32/f64 to string utilities
+
+Copyright (c) 2019-2021 Dario Deledda. All rights reserved.
+Use of this source code is governed by an MIT license
+that can be found in the LICENSE file.
+
+This file contains the f32/f64 to string utilities functions
+
+These functions are based on the work of:
+Publication:PLDI 2018: Proceedings of the 39th ACM SIGPLAN
+Conference on Programming Language Design and ImplementationJune 2018
+Pages 270–282 https://doi.org/10.1145/3192366.3192369
+
+inspired by the Go version here:
+https://github.com/cespare/ryu/tree/ba56a33f39e3bbbfa409095d0f9ae168a595feea
+*/
+
+// General Utilities
+[if debug_strconv ?]
+fn assert1(t bool, msg string) {
+ if !t {
+ panic(msg)
+ }
+}
+
+[inline]
+fn bool_to_int(b bool) int {
+ if b {
+ return 1
+ }
+ return 0
+}
+
+[inline]
+fn bool_to_u32(b bool) u32 {
+ if b {
+ return u32(1)
+ }
+ return u32(0)
+}
+
+[inline]
+fn bool_to_u64(b bool) u64 {
+ if b {
+ return u64(1)
+ }
+ return u64(0)
+}
+
+fn get_string_special(neg bool, expZero bool, mantZero bool) string {
+ if !mantZero {
+ return 'nan'
+ }
+ if !expZero {
+ if neg {
+ return '-inf'
+ } else {
+ return '+inf'
+ }
+ }
+ if neg {
+ return '-0e+00'
+ }
+ return '0e+00'
+}
+
+/*
+32 bit functions
+*/
+
+fn mul_shift_32(m u32, mul u64, ishift int) u32 {
+ // QTODO
+ // assert ishift > 32
+
+ hi, lo := bits.mul_64(u64(m), mul)
+ shifted_sum := (lo >> u64(ishift)) + (hi << u64(64 - ishift))
+ assert1(shifted_sum <= 2147483647, 'shiftedSum <= math.max_u32')
+ return u32(shifted_sum)
+}
+
+fn mul_pow5_invdiv_pow2(m u32, q u32, j int) u32 {
+ return mul_shift_32(m, pow5_inv_split_32[q], j)
+}
+
+fn mul_pow5_div_pow2(m u32, i u32, j int) u32 {
+ return mul_shift_32(m, pow5_split_32[i], j)
+}
+
+fn pow5_factor_32(i_v u32) u32 {
+ mut v := i_v
+ for n := u32(0); true; n++ {
+ q := v / 5
+ r := v % 5
+ if r != 0 {
+ return n
+ }
+ v = q
+ }
+ return v
+}
+
+// multiple_of_power_of_five_32 reports whether v is divisible by 5^p.
+fn multiple_of_power_of_five_32(v u32, p u32) bool {
+ return pow5_factor_32(v) >= p
+}
+
+// multiple_of_power_of_two_32 reports whether v is divisible by 2^p.
+fn multiple_of_power_of_two_32(v u32, p u32) bool {
+ return u32(bits.trailing_zeros_32(v)) >= p
+}
+
+// log10_pow2 returns floor(log_10(2^e)).
+fn log10_pow2(e int) u32 {
+ // The first value this approximation fails for is 2^1651
+ // which is just greater than 10^297.
+ assert1(e >= 0, 'e >= 0')
+ assert1(e <= 1650, 'e <= 1650')
+ return (u32(e) * 78913) >> 18
+}
+
+// log10_pow5 returns floor(log_10(5^e)).
+fn log10_pow5(e int) u32 {
+ // The first value this approximation fails for is 5^2621
+ // which is just greater than 10^1832.
+ assert1(e >= 0, 'e >= 0')
+ assert1(e <= 2620, 'e <= 2620')
+ return (u32(e) * 732923) >> 20
+}
+
+// pow5_bits returns ceil(log_2(5^e)), or else 1 if e==0.
+fn pow5_bits(e int) int {
+ // This approximation works up to the point that the multiplication
+ // overflows at e = 3529. If the multiplication were done in 64 bits,
+ // it would fail at 5^4004 which is just greater than 2^9297.
+ assert1(e >= 0, 'e >= 0')
+ assert1(e <= 3528, 'e <= 3528')
+ return int(((u32(e) * 1217359) >> 19) + 1)
+}
+
+/*
+64 bit functions
+*/
+
+fn shift_right_128(v Uint128, shift int) u64 {
+ // The shift value is always modulo 64.
+ // In the current implementation of the 64-bit version
+ // of Ryu, the shift value is always < 64.
+ // (It is in the range [2, 59].)
+ // Check this here in case a future change requires larger shift
+ // values. In this case this function needs to be adjusted.
+ assert1(shift < 64, 'shift < 64')
+ return (v.hi << u64(64 - shift)) | (v.lo >> u32(shift))
+}
+
+fn mul_shift_64(m u64, mul Uint128, shift int) u64 {
+ hihi, hilo := bits.mul_64(m, mul.hi)
+ lohi, _ := bits.mul_64(m, mul.lo)
+ mut sum := Uint128{
+ lo: lohi + hilo
+ hi: hihi
+ }
+ if sum.lo < lohi {
+ sum.hi++ // overflow
+ }
+ return shift_right_128(sum, shift - 64)
+}
+
+fn pow5_factor_64(v_i u64) u32 {
+ mut v := v_i
+ for n := u32(0); true; n++ {
+ q := v / 5
+ r := v % 5
+ if r != 0 {
+ return n
+ }
+ v = q
+ }
+ return u32(0)
+}
+
+fn multiple_of_power_of_five_64(v u64, p u32) bool {
+ return pow5_factor_64(v) >= p
+}
+
+fn multiple_of_power_of_two_64(v u64, p u32) bool {
+ return u32(bits.trailing_zeros_64(v)) >= p
+}
+
+/*
+f64 to string with string format
+*/
+
+// TODO: Investigate precision issues
+// f32_to_str_l return a string with the f32 converted in a string in decimal notation
+[manualfree]
+pub fn f32_to_str_l(f f32) string {
+ s := f32_to_str(f, 6)
+ res := fxx_to_str_l_parse(s)
+ unsafe { s.free() }
+ return res
+}
+
+[manualfree]
+pub fn f32_to_str_l_no_dot(f f32) string {
+ s := f32_to_str(f, 6)
+ res := fxx_to_str_l_parse_no_dot(s)
+ unsafe { s.free() }
+ return res
+}
+
+[manualfree]
+pub fn f64_to_str_l(f f64) string {
+ s := f64_to_str(f, 18)
+ res := fxx_to_str_l_parse(s)
+ unsafe { s.free() }
+ return res
+}
+
+[manualfree]
+pub fn f64_to_str_l_no_dot(f f64) string {
+ s := f64_to_str(f, 18)
+ res := fxx_to_str_l_parse_no_dot(s)
+ unsafe { s.free() }
+ return res
+}
+
+// f64_to_str_l return a string with the f64 converted in a string in decimal notation
+[manualfree]
+pub fn fxx_to_str_l_parse(s string) string {
+ // check for +inf -inf Nan
+ if s.len > 2 && (s[0] == `n` || s[1] == `i`) {
+ return s.clone()
+ }
+
+ m_sgn_flag := false
+ mut sgn := 1
+ mut b := [26]byte{}
+ mut d_pos := 1
+ mut i := 0
+ mut i1 := 0
+ mut exp := 0
+ mut exp_sgn := 1
+
+ // get sign and decimal parts
+ for c in s {
+ if c == `-` {
+ sgn = -1
+ i++
+ } else if c == `+` {
+ sgn = 1
+ i++
+ } else if c >= `0` && c <= `9` {
+ b[i1] = c
+ i1++
+ i++
+ } else if c == `.` {
+ if sgn > 0 {
+ d_pos = i
+ } else {
+ d_pos = i - 1
+ }
+ i++
+ } else if c == `e` {
+ i++
+ break
+ } else {
+ return 'Float conversion error!!'
+ }
+ }
+ b[i1] = 0
+
+ // get exponent
+ if s[i] == `-` {
+ exp_sgn = -1
+ i++
+ } else if s[i] == `+` {
+ exp_sgn = 1
+ i++
+ }
+
+ mut c := i
+ for c < s.len {
+ exp = exp * 10 + int(s[c] - `0`)
+ c++
+ }
+
+ // allocate exp+32 chars for the return string
+ mut res := []byte{len: exp + 32, init: 0}
+ mut r_i := 0 // result string buffer index
+
+ // println("s:${sgn} b:${b[0]} es:${exp_sgn} exp:${exp}")
+
+ if sgn == 1 {
+ if m_sgn_flag {
+ res[r_i] = `+`
+ r_i++
+ }
+ } else {
+ res[r_i] = `-`
+ r_i++
+ }
+
+ i = 0
+ if exp_sgn >= 0 {
+ for b[i] != 0 {
+ res[r_i] = b[i]
+ r_i++
+ i++
+ if i >= d_pos && exp >= 0 {
+ if exp == 0 {
+ res[r_i] = `.`
+ r_i++
+ }
+ exp--
+ }
+ }
+ for exp >= 0 {
+ res[r_i] = `0`
+ r_i++
+ exp--
+ }
+ } else {
+ mut dot_p := true
+ for exp > 0 {
+ res[r_i] = `0`
+ r_i++
+ exp--
+ if dot_p {
+ res[r_i] = `.`
+ r_i++
+ dot_p = false
+ }
+ }
+ for b[i] != 0 {
+ res[r_i] = b[i]
+ r_i++
+ i++
+ }
+ }
+ /*
+ // remove the dot form the numbers like 2.
+ if r_i > 1 && res[r_i-1] == `.` {
+ r_i--
+ }
+ */
+ res[r_i] = 0
+ return unsafe { tos(res.data, r_i) }
+}
+
+// f64_to_str_l return a string with the f64 converted in a string in decimal notation
+[manualfree]
+pub fn fxx_to_str_l_parse_no_dot(s string) string {
+ // check for +inf -inf Nan
+ if s.len > 2 && (s[0] == `n` || s[1] == `i`) {
+ return s.clone()
+ }
+
+ m_sgn_flag := false
+ mut sgn := 1
+ mut b := [26]byte{}
+ mut d_pos := 1
+ mut i := 0
+ mut i1 := 0
+ mut exp := 0
+ mut exp_sgn := 1
+
+ // get sign and decimal parts
+ for c in s {
+ if c == `-` {
+ sgn = -1
+ i++
+ } else if c == `+` {
+ sgn = 1
+ i++
+ } else if c >= `0` && c <= `9` {
+ b[i1] = c
+ i1++
+ i++
+ } else if c == `.` {
+ if sgn > 0 {
+ d_pos = i
+ } else {
+ d_pos = i - 1
+ }
+ i++
+ } else if c == `e` {
+ i++
+ break
+ } else {
+ return 'Float conversion error!!'
+ }
+ }
+ b[i1] = 0
+
+ // get exponent
+ if s[i] == `-` {
+ exp_sgn = -1
+ i++
+ } else if s[i] == `+` {
+ exp_sgn = 1
+ i++
+ }
+
+ mut c := i
+ for c < s.len {
+ exp = exp * 10 + int(s[c] - `0`)
+ c++
+ }
+
+ // allocate exp+32 chars for the return string
+ mut res := []byte{len: exp + 32, init: 0}
+ mut r_i := 0 // result string buffer index
+
+ // println("s:${sgn} b:${b[0]} es:${exp_sgn} exp:${exp}")
+
+ if sgn == 1 {
+ if m_sgn_flag {
+ res[r_i] = `+`
+ r_i++
+ }
+ } else {
+ res[r_i] = `-`
+ r_i++
+ }
+
+ i = 0
+ if exp_sgn >= 0 {
+ for b[i] != 0 {
+ res[r_i] = b[i]
+ r_i++
+ i++
+ if i >= d_pos && exp >= 0 {
+ if exp == 0 {
+ res[r_i] = `.`
+ r_i++
+ }
+ exp--
+ }
+ }
+ for exp >= 0 {
+ res[r_i] = `0`
+ r_i++
+ exp--
+ }
+ } else {
+ mut dot_p := true
+ for exp > 0 {
+ res[r_i] = `0`
+ r_i++
+ exp--
+ if dot_p {
+ res[r_i] = `.`
+ r_i++
+ dot_p = false
+ }
+ }
+ for b[i] != 0 {
+ res[r_i] = b[i]
+ r_i++
+ i++
+ }
+ }
+
+ // remove the dot form the numbers like 2.
+ if r_i > 1 && res[r_i - 1] == `.` {
+ r_i--
+ }
+
+ res[r_i] = 0
+ return unsafe { tos(res.data, r_i) }
+}
+
+// dec_digits return the number of decimal digit of an u64
+pub fn dec_digits(n u64) int {
+ if n <= 9_999_999_999 { // 1-10
+ if n <= 99_999 { // 5
+ if n <= 99 { // 2
+ if n <= 9 { // 1
+ return 1
+ } else {
+ return 2
+ }
+ } else {
+ if n <= 999 { // 3
+ return 3
+ } else {
+ if n <= 9999 { // 4
+ return 4
+ } else {
+ return 5
+ }
+ }
+ }
+ } else {
+ if n <= 9_999_999 { // 7
+ if n <= 999_999 { // 6
+ return 6
+ } else {
+ return 7
+ }
+ } else {
+ if n <= 99_999_999 { // 8
+ return 8
+ } else {
+ if n <= 999_999_999 { // 9
+ return 9
+ }
+ return 10
+ }
+ }
+ }
+ } else {
+ if n <= 999_999_999_999_999 { // 5
+ if n <= 999_999_999_999 { // 2
+ if n <= 99_999_999_999 { // 1
+ return 11
+ } else {
+ return 12
+ }
+ } else {
+ if n <= 9_999_999_999_999 { // 3
+ return 13
+ } else {
+ if n <= 99_999_999_999_999 { // 4
+ return 14
+ } else {
+ return 15
+ }
+ }
+ }
+ } else {
+ if n <= 99_999_999_999_999_999 { // 7
+ if n <= 9_999_999_999_999_999 { // 6
+ return 16
+ } else {
+ return 17
+ }
+ } else {
+ if n <= 999_999_999_999_999_999 { // 8
+ return 18
+ } else {
+ if n <= 9_999_999_999_999_999_999 { // 9
+ return 19
+ }
+ return 20
+ }
+ }
+ }
+ }
+}