aboutsummaryrefslogtreecommitdiff
path: root/v_windows/v/vlib/math/exp.v
diff options
context:
space:
mode:
authorIndrajith K L2022-12-03 17:00:20 +0530
committerIndrajith K L2022-12-03 17:00:20 +0530
commitf5c4671bfbad96bf346bd7e9a21fc4317b4959df (patch)
tree2764fc62da58f2ba8da7ed341643fc359873142f /v_windows/v/vlib/math/exp.v
downloadcli-tools-windows-f5c4671bfbad96bf346bd7e9a21fc4317b4959df.tar.gz
cli-tools-windows-f5c4671bfbad96bf346bd7e9a21fc4317b4959df.tar.bz2
cli-tools-windows-f5c4671bfbad96bf346bd7e9a21fc4317b4959df.zip
Adds most of the toolsHEADmaster
Diffstat (limited to 'v_windows/v/vlib/math/exp.v')
-rw-r--r--v_windows/v/vlib/math/exp.v214
1 files changed, 214 insertions, 0 deletions
diff --git a/v_windows/v/vlib/math/exp.v b/v_windows/v/vlib/math/exp.v
new file mode 100644
index 0000000..7a11eb6
--- /dev/null
+++ b/v_windows/v/vlib/math/exp.v
@@ -0,0 +1,214 @@
+module math
+
+import math.internal
+
+const (
+ f64_max_exp = f64(1024)
+ f64_min_exp = f64(-1021)
+ threshold = 7.09782712893383973096e+02 // 0x40862E42FEFA39EF
+ ln2_x56 = 3.88162421113569373274e+01 // 0x4043687a9f1af2b1
+ ln2_halfx3 = 1.03972077083991796413e+00 // 0x3ff0a2b23f3bab73
+ ln2_half = 3.46573590279972654709e-01 // 0x3fd62e42fefa39ef
+ ln2hi = 6.93147180369123816490e-01 // 0x3fe62e42fee00000
+ ln2lo = 1.90821492927058770002e-10 // 0x3dea39ef35793c76
+ inv_ln2 = 1.44269504088896338700e+00 // 0x3ff71547652b82fe
+ // scaled coefficients related to expm1
+ expm1_q1 = -3.33333333333331316428e-02 // 0xBFA11111111110F4
+ expm1_q2 = 1.58730158725481460165e-03 // 0x3F5A01A019FE5585
+ expm1_q3 = -7.93650757867487942473e-05 // 0xBF14CE199EAADBB7
+ expm1_q4 = 4.00821782732936239552e-06 // 0x3ED0CFCA86E65239
+ expm1_q5 = -2.01099218183624371326e-07 // 0xBE8AFDB76E09C32D
+)
+
+// exp returns e**x, the base-e exponential of x.
+//
+// special cases are:
+// exp(+inf) = +inf
+// exp(nan) = nan
+// Very large values overflow to 0 or +inf.
+// Very small values underflow to 1.
+pub fn exp(x f64) f64 {
+ log2e := 1.44269504088896338700e+00
+ overflow := 7.09782712893383973096e+02
+ underflow := -7.45133219101941108420e+02
+ near_zero := 1.0 / (1 << 28) // 2**-28
+ // special cases
+ if is_nan(x) || is_inf(x, 1) {
+ return x
+ }
+ if is_inf(x, -1) {
+ return 0.0
+ }
+ if x > overflow {
+ return inf(1)
+ }
+ if x < underflow {
+ return 0.0
+ }
+ if -near_zero < x && x < near_zero {
+ return 1.0 + x
+ }
+ // reduce; computed as r = hi - lo for extra precision.
+ mut k := 0
+ if x < 0 {
+ k = int(log2e * x - 0.5)
+ }
+ if x > 0 {
+ k = int(log2e * x + 0.5)
+ }
+ hi := x - f64(k) * math.ln2hi
+ lo := f64(k) * math.ln2lo
+ // compute
+ return expmulti(hi, lo, k)
+}
+
+// exp2 returns 2**x, the base-2 exponential of x.
+//
+// special cases are the same as exp.
+pub fn exp2(x f64) f64 {
+ overflow := 1.0239999999999999e+03
+ underflow := -1.0740e+03
+ if is_nan(x) || is_inf(x, 1) {
+ return x
+ }
+ if is_inf(x, -1) {
+ return 0
+ }
+ if x > overflow {
+ return inf(1)
+ }
+ if x < underflow {
+ return 0
+ }
+ // argument reduction; x = r×lg(e) + k with |r| ≤ ln(2)/2.
+ // computed as r = hi - lo for extra precision.
+ mut k := 0
+ if x > 0 {
+ k = int(x + 0.5)
+ }
+ if x < 0 {
+ k = int(x - 0.5)
+ }
+ mut t := x - f64(k)
+ hi := t * math.ln2hi
+ lo := -t * math.ln2lo
+ // compute
+ return expmulti(hi, lo, k)
+}
+
+pub fn ldexp(x f64, e int) f64 {
+ if x == 0.0 {
+ return x
+ } else {
+ mut y, ex := frexp(x)
+ mut e2 := f64(e + ex)
+ if e2 >= math.f64_max_exp {
+ y *= pow(2.0, e2 - math.f64_max_exp + 1.0)
+ e2 = math.f64_max_exp - 1.0
+ } else if e2 <= math.f64_min_exp {
+ y *= pow(2.0, e2 - math.f64_min_exp - 1.0)
+ e2 = math.f64_min_exp + 1.0
+ }
+ return y * pow(2.0, e2)
+ }
+}
+
+// frexp breaks f into a normalized fraction
+// and an integral power of two.
+// It returns frac and exp satisfying f == frac × 2**exp,
+// with the absolute value of frac in the interval [½, 1).
+//
+// special cases are:
+// frexp(±0) = ±0, 0
+// frexp(±inf) = ±inf, 0
+// frexp(nan) = nan, 0
+// pub fn frexp(f f64) (f64, int) {
+// // special cases
+// if f == 0.0 {
+// return f, 0 // correctly return -0
+// }
+// if is_inf(f, 0) || is_nan(f) {
+// return f, 0
+// }
+// f_norm, mut exp := normalize(f)
+// mut x := f64_bits(f_norm)
+// exp += int((x>>shift)&mask) - bias + 1
+// x &= ~(mask << shift)
+// x |= (-1 + bias) << shift
+// return f64_from_bits(x), exp
+pub fn frexp(x f64) (f64, int) {
+ if x == 0.0 {
+ return 0.0, 0
+ } else if !is_finite(x) {
+ return x, 0
+ } else if abs(x) >= 0.5 && abs(x) < 1 { // Handle the common case
+ return x, 0
+ } else {
+ ex := ceil(log(abs(x)) / ln2)
+ mut ei := int(ex) // Prevent underflow and overflow of 2**(-ei)
+ if ei < int(math.f64_min_exp) {
+ ei = int(math.f64_min_exp)
+ }
+ if ei > -int(math.f64_min_exp) {
+ ei = -int(math.f64_min_exp)
+ }
+ mut f := x * pow(2.0, -ei)
+ if !is_finite(f) { // This should not happen
+ return f, 0
+ }
+ for abs(f) >= 1.0 {
+ ei++
+ f /= 2.0
+ }
+ for abs(f) > 0 && abs(f) < 0.5 {
+ ei--
+ f *= 2.0
+ }
+ return f, ei
+ }
+}
+
+// special cases are:
+// expm1(+inf) = +inf
+// expm1(-inf) = -1
+// expm1(nan) = nan
+pub fn expm1(x f64) f64 {
+ if is_inf(x, 1) || is_nan(x) {
+ return x
+ }
+ if is_inf(x, -1) {
+ return f64(-1)
+ }
+ // FIXME: this should be improved
+ if abs(x) < ln2 { // Compute the taylor series S = x + (1/2!) x^2 + (1/3!) x^3 + ...
+ mut i := 1.0
+ mut sum := x
+ mut term := x / 1.0
+ i++
+ term *= x / f64(i)
+ sum += term
+ for abs(term) > abs(sum) * internal.f64_epsilon {
+ i++
+ term *= x / f64(i)
+ sum += term
+ }
+ return sum
+ } else {
+ return exp(x) - 1
+ }
+}
+
+// exp1 returns e**r × 2**k where r = hi - lo and |r| ≤ ln(2)/2.
+fn expmulti(hi f64, lo f64, k int) f64 {
+ exp_p1 := 1.66666666666666657415e-01 // 0x3FC55555; 0x55555555
+ exp_p2 := -2.77777777770155933842e-03 // 0xBF66C16C; 0x16BEBD93
+ exp_p3 := 6.61375632143793436117e-05 // 0x3F11566A; 0xAF25DE2C
+ exp_p4 := -1.65339022054652515390e-06 // 0xBEBBBD41; 0xC5D26BF1
+ exp_p5 := 4.13813679705723846039e-08 // 0x3E663769; 0x72BEA4D0
+ r := hi - lo
+ t := r * r
+ c := r - t * (exp_p1 + t * (exp_p2 + t * (exp_p3 + t * (exp_p4 + t * exp_p5))))
+ y := 1 - ((lo - (r * c) / (2 - c)) - hi)
+ // TODO(rsc): make sure ldexp can handle boundary k
+ return ldexp(y, k)
+}