aboutsummaryrefslogtreecommitdiff
path: root/v_windows/v/vlib/math/fractions/fraction.v
diff options
context:
space:
mode:
authorIndrajith K L2022-12-03 17:00:20 +0530
committerIndrajith K L2022-12-03 17:00:20 +0530
commitf5c4671bfbad96bf346bd7e9a21fc4317b4959df (patch)
tree2764fc62da58f2ba8da7ed341643fc359873142f /v_windows/v/vlib/math/fractions/fraction.v
downloadcli-tools-windows-master.tar.gz
cli-tools-windows-master.tar.bz2
cli-tools-windows-master.zip
Adds most of the toolsHEADmaster
Diffstat (limited to 'v_windows/v/vlib/math/fractions/fraction.v')
-rw-r--r--v_windows/v/vlib/math/fractions/fraction.v259
1 files changed, 259 insertions, 0 deletions
diff --git a/v_windows/v/vlib/math/fractions/fraction.v b/v_windows/v/vlib/math/fractions/fraction.v
new file mode 100644
index 0000000..69c8f63
--- /dev/null
+++ b/v_windows/v/vlib/math/fractions/fraction.v
@@ -0,0 +1,259 @@
+// Copyright (c) 2019-2021 Alexander Medvednikov. All rights reserved.
+// Use of this source code is governed by an MIT license
+// that can be found in the LICENSE file.
+module fractions
+
+import math
+import math.bits
+
+// Fraction Struct
+// ---------------
+// A Fraction has a numerator (n) and a denominator (d). If the user uses
+// the helper functions in this module, then the following are guaranteed:
+// 1. If the user provides n and d with gcd(n, d) > 1, the fraction will
+// not be reduced automatically.
+// 2. d cannot be set to zero. The factory function will panic.
+// 3. If provided d is negative, it will be made positive. n will change as well.
+struct Fraction {
+pub:
+ n i64
+ d i64
+ is_reduced bool
+}
+
+// A factory function for creating a Fraction, adds a boundary condition
+// to ensure that the denominator is non-zero. It automatically converts
+// the negative denominator to positive and adjusts the numerator.
+// NOTE: Fractions created are not reduced by default.
+pub fn fraction(n i64, d i64) Fraction {
+ if d == 0 {
+ panic('Denominator cannot be zero')
+ }
+ // The denominator is always guaranteed to be positive (and non-zero).
+ if d < 0 {
+ return fraction(-n, -d)
+ }
+ return Fraction{
+ n: n
+ d: d
+ is_reduced: math.gcd(n, d) == 1
+ }
+}
+
+// To String method
+pub fn (f Fraction) str() string {
+ return '$f.n/$f.d'
+}
+
+//
+// + ---------------------+
+// | Arithmetic functions.|
+// + ---------------------+
+//
+// These are implemented from Knuth, TAOCP Vol 2. Section 4.5
+//
+// Returns a correctly reduced result for both addition and subtraction
+// NOTE: requires reduced inputs
+fn general_addition_result(f1 Fraction, f2 Fraction, addition bool) Fraction {
+ d1 := math.gcd(f1.d, f2.d)
+ // d1 happens to be 1 around 600/(pi)^2 or 61 percent of the time (Theorem 4.5.2D)
+ if d1 == 1 {
+ num1n2d := f1.n * f2.d
+ num1d2n := f1.d * f2.n
+ n := if addition { num1n2d + num1d2n } else { num1n2d - num1d2n }
+ return Fraction{
+ n: n
+ d: f1.d * f2.d
+ is_reduced: true
+ }
+ }
+ // Here d1 > 1.
+ f1den := f1.d / d1
+ f2den := f2.d / d1
+ term1 := f1.n * f2den
+ term2 := f2.n * f1den
+ t := if addition { term1 + term2 } else { term1 - term2 }
+ d2 := math.gcd(t, d1)
+ return Fraction{
+ n: t / d2
+ d: f1den * (f2.d / d2)
+ is_reduced: true
+ }
+}
+
+// Fraction add using operator overloading
+pub fn (f1 Fraction) + (f2 Fraction) Fraction {
+ return general_addition_result(f1.reduce(), f2.reduce(), true)
+}
+
+// Fraction subtract using operator overloading
+pub fn (f1 Fraction) - (f2 Fraction) Fraction {
+ return general_addition_result(f1.reduce(), f2.reduce(), false)
+}
+
+// Returns a correctly reduced result for both multiplication and division
+// NOTE: requires reduced inputs
+fn general_multiplication_result(f1 Fraction, f2 Fraction, multiplication bool) Fraction {
+ // * Theorem: If f1 and f2 are reduced i.e. gcd(f1.n, f1.d) == 1 and gcd(f2.n, f2.d) == 1,
+ // then gcd(f1.n * f2.n, f1.d * f2.d) == gcd(f1.n, f2.d) * gcd(f1.d, f2.n)
+ // * Knuth poses this an exercise for 4.5.1. - Exercise 2
+ // * Also, note that:
+ // The terms are flipped for multiplication and division, so the gcds must be calculated carefully
+ // We do multiple divisions in order to prevent any possible overflows.
+ // * One more thing:
+ // if d = gcd(a, b) for example, then d divides both a and b
+ if multiplication {
+ d1 := math.gcd(f1.n, f2.d)
+ d2 := math.gcd(f1.d, f2.n)
+ return Fraction{
+ n: (f1.n / d1) * (f2.n / d2)
+ d: (f2.d / d1) * (f1.d / d2)
+ is_reduced: true
+ }
+ } else {
+ d1 := math.gcd(f1.n, f2.n)
+ d2 := math.gcd(f1.d, f2.d)
+ return Fraction{
+ n: (f1.n / d1) * (f2.d / d2)
+ d: (f2.n / d1) * (f1.d / d2)
+ is_reduced: true
+ }
+ }
+}
+
+// Fraction multiply using operator overloading
+pub fn (f1 Fraction) * (f2 Fraction) Fraction {
+ return general_multiplication_result(f1.reduce(), f2.reduce(), true)
+}
+
+// Fraction divide using operator overloading
+pub fn (f1 Fraction) / (f2 Fraction) Fraction {
+ if f2.n == 0 {
+ panic('Cannot divide by zero')
+ }
+ // If the second fraction is negative, it will
+ // mess up the sign. We need positive denominator
+ if f2.n < 0 {
+ return f1.negate() / f2.negate()
+ }
+ return general_multiplication_result(f1.reduce(), f2.reduce(), false)
+}
+
+// Fraction negate method
+pub fn (f Fraction) negate() Fraction {
+ return Fraction{
+ n: -f.n
+ d: f.d
+ is_reduced: f.is_reduced
+ }
+}
+
+// Fraction reciprocal method
+pub fn (f Fraction) reciprocal() Fraction {
+ if f.n == 0 {
+ panic('Denominator cannot be zero')
+ }
+ return Fraction{
+ n: f.d
+ d: f.n
+ is_reduced: f.is_reduced
+ }
+}
+
+// Fraction method which reduces the fraction
+pub fn (f Fraction) reduce() Fraction {
+ if f.is_reduced {
+ return f
+ }
+ cf := math.gcd(f.n, f.d)
+ return Fraction{
+ n: f.n / cf
+ d: f.d / cf
+ is_reduced: true
+ }
+}
+
+// f64 converts the Fraction to 64-bit floating point
+pub fn (f Fraction) f64() f64 {
+ return f64(f.n) / f64(f.d)
+}
+
+//
+// + ------------------+
+// | Utility functions.|
+// + ------------------+
+//
+// Returns the absolute value of an i64
+fn abs(num i64) i64 {
+ if num < 0 {
+ return -num
+ } else {
+ return num
+ }
+}
+
+// cmp_i64s compares the two arguments, returns 0 when equal, 1 when the first is bigger, -1 otherwise
+fn cmp_i64s(a i64, b i64) int {
+ if a == b {
+ return 0
+ } else if a > b {
+ return 1
+ } else {
+ return -1
+ }
+}
+
+// cmp_f64s compares the two arguments, returns 0 when equal, 1 when the first is bigger, -1 otherwise
+fn cmp_f64s(a f64, b f64) int {
+ // V uses epsilon comparison internally
+ if a == b {
+ return 0
+ } else if a > b {
+ return 1
+ } else {
+ return -1
+ }
+}
+
+// Two integers are safe to multiply when their bit lengths
+// sum up to less than 64 (conservative estimate).
+fn safe_to_multiply(a i64, b i64) bool {
+ return (bits.len_64(u64(abs(a))) + bits.len_64(u64(abs(b)))) < 64
+}
+
+// cmp compares the two arguments, returns 0 when equal, 1 when the first is bigger, -1 otherwise
+fn cmp(f1 Fraction, f2 Fraction) int {
+ if safe_to_multiply(f1.n, f2.d) && safe_to_multiply(f2.n, f1.d) {
+ return cmp_i64s(f1.n * f2.d, f2.n * f1.d)
+ } else {
+ return cmp_f64s(f1.f64(), f2.f64())
+ }
+}
+
+// +-----------------------------+
+// | Public comparison functions |
+// +-----------------------------+
+// equals returns true if both the Fractions are equal
+pub fn (f1 Fraction) equals(f2 Fraction) bool {
+ return cmp(f1, f2) == 0
+}
+
+// ge returns true if f1 >= f2
+pub fn (f1 Fraction) ge(f2 Fraction) bool {
+ return cmp(f1, f2) >= 0
+}
+
+// gt returns true if f1 > f2
+pub fn (f1 Fraction) gt(f2 Fraction) bool {
+ return cmp(f1, f2) > 0
+}
+
+// le returns true if f1 <= f2
+pub fn (f1 Fraction) le(f2 Fraction) bool {
+ return cmp(f1, f2) <= 0
+}
+
+// lt returns true if f1 < f2
+pub fn (f1 Fraction) lt(f2 Fraction) bool {
+ return cmp(f1, f2) < 0
+}