diff options
author | Indrajith K L | 2022-12-03 17:00:20 +0530 |
---|---|---|
committer | Indrajith K L | 2022-12-03 17:00:20 +0530 |
commit | f5c4671bfbad96bf346bd7e9a21fc4317b4959df (patch) | |
tree | 2764fc62da58f2ba8da7ed341643fc359873142f /v_windows/v/vlib/math/gamma.v | |
download | cli-tools-windows-master.tar.gz cli-tools-windows-master.tar.bz2 cli-tools-windows-master.zip |
Diffstat (limited to 'v_windows/v/vlib/math/gamma.v')
-rw-r--r-- | v_windows/v/vlib/math/gamma.v | 335 |
1 files changed, 335 insertions, 0 deletions
diff --git a/v_windows/v/vlib/math/gamma.v b/v_windows/v/vlib/math/gamma.v new file mode 100644 index 0000000..e0061db --- /dev/null +++ b/v_windows/v/vlib/math/gamma.v @@ -0,0 +1,335 @@ +module math + +// gamma function computed by Stirling's formula. +// The pair of results must be multiplied together to get the actual answer. +// The multiplication is left to the caller so that, if careful, the caller can avoid +// infinity for 172 <= x <= 180. +// The polynomial is valid for 33 <= x <= 172 larger values are only used +// in reciprocal and produce denormalized floats. The lower precision there +// masks any imprecision in the polynomial. +fn stirling(x f64) (f64, f64) { + if x > 200 { + return inf(1), 1.0 + } + sqrt_two_pi := 2.506628274631000502417 + max_stirling := 143.01608 + mut w := 1.0 / x + w = 1.0 + w * ((((gamma_s[0] * w + gamma_s[1]) * w + gamma_s[2]) * w + gamma_s[3]) * w + + gamma_s[4]) + mut y1 := exp(x) + mut y2 := 1.0 + if x > max_stirling { // avoid Pow() overflow + v := pow(x, 0.5 * x - 0.25) + y1_ := y1 + y1 = v + y2 = v / y1_ + } else { + y1 = pow(x, x - 0.5) / y1 + } + return y1, f64(sqrt_two_pi) * w * y2 +} + +// gamma returns the gamma function of x. +// +// special ifs are: +// gamma(+inf) = +inf +// gamma(+0) = +inf +// gamma(-0) = -inf +// gamma(x) = nan for integer x < 0 +// gamma(-inf) = nan +// gamma(nan) = nan +pub fn gamma(a f64) f64 { + mut x := a + euler := 0.57721566490153286060651209008240243104215933593992 // A001620 + if is_neg_int(x) || is_inf(x, -1) || is_nan(x) { + return nan() + } + if is_inf(x, 1) { + return inf(1) + } + if x == 0.0 { + return copysign(inf(1), x) + } + mut q := abs(x) + mut p := floor(q) + if q > 33 { + if x >= 0 { + y1, y2 := stirling(x) + return y1 * y2 + } + // Note: x is negative but (checked above) not a negative integer, + // so x must be small enough to be in range for conversion to i64. + // If |x| were >= 2⁶³ it would have to be an integer. + mut signgam := 1 + ip := i64(p) + if (ip & 1) == 0 { + signgam = -1 + } + mut z := q - p + if z > 0.5 { + p = p + 1 + z = q - p + } + z = q * sin(pi * z) + if z == 0 { + return inf(signgam) + } + sq1, sq2 := stirling(q) + absz := abs(z) + d := absz * sq1 * sq2 + if is_inf(d, 0) { + z = pi / absz / sq1 / sq2 + } else { + z = pi / d + } + return f64(signgam) * z + } + // Reduce argument + mut z := 1.0 + for x >= 3 { + x = x - 1 + z = z * x + } + for x < 0 { + if x > -1e-09 { + unsafe { + goto small + } + } + z = z / x + x = x + 1 + } + for x < 2 { + if x < 1e-09 { + unsafe { + goto small + } + } + z = z / x + x = x + 1 + } + if x == 2 { + return z + } + x = x - 2 + p = (((((x * gamma_p[0] + gamma_p[1]) * x + gamma_p[2]) * x + gamma_p[3]) * x + + gamma_p[4]) * x + gamma_p[5]) * x + gamma_p[6] + q = ((((((x * gamma_q[0] + gamma_q[1]) * x + gamma_q[2]) * x + gamma_q[3]) * x + + gamma_q[4]) * x + gamma_q[5]) * x + gamma_q[6]) * x + gamma_q[7] + if true { + return z * p / q + } + small: + if x == 0 { + return inf(1) + } + return z / ((1.0 + euler * x) * x) +} + +// log_gamma returns the natural logarithm and sign (-1 or +1) of Gamma(x). +// +// special ifs are: +// log_gamma(+inf) = +inf +// log_gamma(0) = +inf +// log_gamma(-integer) = +inf +// log_gamma(-inf) = -inf +// log_gamma(nan) = nan +pub fn log_gamma(x f64) f64 { + y, _ := log_gamma_sign(x) + return y +} + +pub fn log_gamma_sign(a f64) (f64, int) { + mut x := a + ymin := 1.461632144968362245 + tiny := exp2(-70) + two52 := exp2(52) // 0x4330000000000000 ~4.5036e+15 + two58 := exp2(58) // 0x4390000000000000 ~2.8823e+17 + tc := 1.46163214496836224576e+00 // 0x3FF762D86356BE3F + tf := -1.21486290535849611461e-01 // 0xBFBF19B9BCC38A42 + // tt := -(tail of tf) + tt := -3.63867699703950536541e-18 // 0xBC50C7CAA48A971F + mut sign := 1 + if is_nan(x) { + return x, sign + } + if is_inf(x, 1) { + return x, sign + } + if x == 0.0 { + return inf(1), sign + } + mut neg := false + if x < 0 { + x = -x + neg = true + } + if x < tiny { // if |x| < 2**-70, return -log(|x|) + if neg { + sign = -1 + } + return -log(x), sign + } + mut nadj := 0.0 + if neg { + if x >= two52 { + // x| >= 2**52, must be -integer + return inf(1), sign + } + t := sin_pi(x) + if t == 0 { + return inf(1), sign + } + nadj = log(pi / abs(t * x)) + if t < 0 { + sign = -1 + } + } + mut lgamma := 0.0 + if x == 1 || x == 2 { // purge off 1 and 2 + return 0.0, sign + } else if x < 2 { // use lgamma(x) = lgamma(x+1) - log(x) + mut y := 0.0 + mut i := 0 + if x <= 0.9 { + lgamma = -log(x) + if x >= (ymin - 1 + 0.27) { // 0.7316 <= x <= 0.9 + y = 1.0 - x + i = 0 + } else if x >= (ymin - 1 - 0.27) { // 0.2316 <= x < 0.7316 + y = x - (tc - 1) + i = 1 + } else { // 0 < x < 0.2316 + y = x + i = 2 + } + } else { + lgamma = 0 + if x >= (ymin + 0.27) { // 1.7316 <= x < 2 + y = f64(2) - x + i = 0 + } else if x >= (ymin - 0.27) { // 1.2316 <= x < 1.7316 + y = x - tc + i = 1 + } else { // 0.9 < x < 1.2316 + y = x - 1 + i = 2 + } + } + if i == 0 { + z := y * y + gamma_p1 := lgamma_a[0] + z * (lgamma_a[2] + z * (lgamma_a[4] + z * (lgamma_a[6] + + z * (lgamma_a[8] + z * lgamma_a[10])))) + gamma_p2 := z * (lgamma_a[1] + z * (lgamma_a[3] + z * (lgamma_a[5] + z * (lgamma_a[7] + + z * (lgamma_a[9] + z * lgamma_a[11]))))) + p := y * gamma_p1 + gamma_p2 + lgamma += (p - 0.5 * y) + } else if i == 1 { + z := y * y + w := z * y + gamma_p1 := lgamma_t[0] + w * (lgamma_t[3] + w * (lgamma_t[6] + w * (lgamma_t[9] + + w * lgamma_t[12]))) // parallel comp + gamma_p2 := lgamma_t[1] + w * (lgamma_t[4] + w * (lgamma_t[7] + w * (lgamma_t[10] + + w * lgamma_t[13]))) + gamma_p3 := lgamma_t[2] + w * (lgamma_t[5] + w * (lgamma_t[8] + w * (lgamma_t[11] + + w * lgamma_t[14]))) + p := z * gamma_p1 - (tt - w * (gamma_p2 + y * gamma_p3)) + lgamma += (tf + p) + } else if i == 2 { + gamma_p1 := y * (lgamma_u[0] + y * (lgamma_u[1] + y * (lgamma_u[2] + y * (lgamma_u[3] + + y * (lgamma_u[4] + y * lgamma_u[5]))))) + gamma_p2 := 1.0 + y * (lgamma_v[1] + y * (lgamma_v[2] + y * (lgamma_v[3] + + y * (lgamma_v[4] + y * lgamma_v[5])))) + lgamma += (-0.5 * y + gamma_p1 / gamma_p2) + } + } else if x < 8 { // 2 <= x < 8 + i := int(x) + y := x - f64(i) + p := y * (lgamma_s[0] + y * (lgamma_s[1] + y * (lgamma_s[2] + y * (lgamma_s[3] + + y * (lgamma_s[4] + y * (lgamma_s[5] + y * lgamma_s[6])))))) + q := 1.0 + y * (lgamma_r[1] + y * (lgamma_r[2] + y * (lgamma_r[3] + y * (lgamma_r[4] + + y * (lgamma_r[5] + y * lgamma_r[6]))))) + lgamma = 0.5 * y + p / q + mut z := 1.0 // lgamma(1+s) = log(s) + lgamma(s) + if i == 7 { + z *= (y + 6) + z *= (y + 5) + z *= (y + 4) + z *= (y + 3) + z *= (y + 2) + lgamma += log(z) + } else if i == 6 { + z *= (y + 5) + z *= (y + 4) + z *= (y + 3) + z *= (y + 2) + lgamma += log(z) + } else if i == 5 { + z *= (y + 4) + z *= (y + 3) + z *= (y + 2) + lgamma += log(z) + } else if i == 4 { + z *= (y + 3) + z *= (y + 2) + lgamma += log(z) + } else if i == 3 { + z *= (y + 2) + lgamma += log(z) + } + } else if x < two58 { // 8 <= x < 2**58 + t := log(x) + z := 1.0 / x + y := z * z + w := lgamma_w[0] + z * (lgamma_w[1] + y * (lgamma_w[2] + y * (lgamma_w[3] + + y * (lgamma_w[4] + y * (lgamma_w[5] + y * lgamma_w[6]))))) + lgamma = (x - 0.5) * (t - 1.0) + w + } else { // 2**58 <= x <= Inf + lgamma = x * (log(x) - 1.0) + } + if neg { + lgamma = nadj - lgamma + } + return lgamma, sign +} + +// sin_pi(x) is a helper function for negative x +fn sin_pi(x_ f64) f64 { + mut x := x_ + two52 := exp2(52) // 0x4330000000000000 ~4.5036e+15 + two53 := exp2(53) // 0x4340000000000000 ~9.0072e+15 + if x < 0.25 { + return -sin(pi * x) + } + // argument reduction + mut z := floor(x) + mut n := 0 + if z != x { // inexact + x = mod(x, 2) + n = int(x * 4) + } else { + if x >= two53 { // x must be even + x = 0 + n = 0 + } else { + if x < two52 { + z = x + two52 // exact + } + n = 1 & int(f64_bits(z)) + x = f64(n) + n <<= 2 + } + } + if n == 0 { + x = sin(pi * x) + } else if n == 1 || n == 2 { + x = cos(pi * (0.5 - x)) + } else if n == 3 || n == 4 { + x = sin(pi * (1.0 - x)) + } else if n == 5 || n == 6 { + x = -cos(pi * (x - 1.5)) + } else { + x = sin(pi * (x - 2)) + } + return -x +} |