aboutsummaryrefslogtreecommitdiff
path: root/v_windows/v/vlib/rand/dist/dist_test.v
diff options
context:
space:
mode:
authorIndrajith K L2022-12-03 17:00:20 +0530
committerIndrajith K L2022-12-03 17:00:20 +0530
commitf5c4671bfbad96bf346bd7e9a21fc4317b4959df (patch)
tree2764fc62da58f2ba8da7ed341643fc359873142f /v_windows/v/vlib/rand/dist/dist_test.v
downloadcli-tools-windows-f5c4671bfbad96bf346bd7e9a21fc4317b4959df.tar.gz
cli-tools-windows-f5c4671bfbad96bf346bd7e9a21fc4317b4959df.tar.bz2
cli-tools-windows-f5c4671bfbad96bf346bd7e9a21fc4317b4959df.zip
Adds most of the toolsHEADmaster
Diffstat (limited to 'v_windows/v/vlib/rand/dist/dist_test.v')
-rw-r--r--v_windows/v/vlib/rand/dist/dist_test.v134
1 files changed, 134 insertions, 0 deletions
diff --git a/v_windows/v/vlib/rand/dist/dist_test.v b/v_windows/v/vlib/rand/dist/dist_test.v
new file mode 100644
index 0000000..a7c565e
--- /dev/null
+++ b/v_windows/v/vlib/rand/dist/dist_test.v
@@ -0,0 +1,134 @@
+import math
+import rand
+import rand.dist
+
+const (
+ // The sample size to be used
+ count = 2000
+ // Accepted error is within 5% of the actual values.
+ error = 0.05
+ // The seeds used (for reproducible testing)
+ seeds = [[u32(0xffff24), 0xabcd], [u32(0x141024), 0x42851],
+ [u32(0x1452), 0x90cd],
+ ]
+)
+
+fn test_bernoulli() {
+ ps := [0.0, 0.1, 1.0 / 3.0, 0.5, 0.8, 17.0 / 18.0, 1.0]
+
+ for seed in seeds {
+ rand.seed(seed)
+ for p in ps {
+ mut successes := 0
+ for _ in 0 .. count {
+ if dist.bernoulli(p) {
+ successes++
+ }
+ }
+ assert math.abs(f64(successes) / count - p) < error
+ }
+ }
+}
+
+fn test_binomial() {
+ ns := [100, 200, 1000]
+ ps := [0.0, 0.5, 0.95, 1.0]
+
+ for seed in seeds {
+ rand.seed(seed)
+ for n in ns {
+ for p in ps {
+ np := n * p
+ npq := np * (1 - p)
+
+ mut sum := 0
+ mut var := 0.0
+ for _ in 0 .. count {
+ x := dist.binomial(n, p)
+ sum += x
+ dist := (x - np)
+ var += dist * dist
+ }
+
+ assert math.abs(f64(sum / count) - np) / n < error
+ assert math.abs(f64(var / count) - npq) / n < error
+ }
+ }
+ }
+}
+
+fn test_normal_pair() {
+ mus := [0, 10, 100, -40]
+ sigmas := [1, 2, 40, 5]
+ total := 2 * count
+
+ for seed in seeds {
+ rand.seed(seed)
+ for mu in mus {
+ for sigma in sigmas {
+ mut sum := 0.0
+ mut var := 0.0
+ for _ in 0 .. count {
+ x, y := dist.normal_pair(mu: mu, sigma: sigma)
+ sum += x + y
+ dist_x := x - mu
+ dist_y := y - mu
+ var += dist_x * dist_x
+ var += dist_y * dist_y
+ }
+
+ variance := sigma * sigma
+ assert math.abs(f64(sum / total) - mu) / sigma < 1
+ assert math.abs(f64(var / total) - variance) / variance < 2 * error
+ }
+ }
+ }
+}
+
+fn test_normal() {
+ mus := [0, 10, 100, -40, 20]
+ sigmas := [1, 2, 5]
+
+ for seed in seeds {
+ rand.seed(seed)
+ for mu in mus {
+ for sigma in sigmas {
+ mut sum := 0.0
+ mut var := 0.0
+ for _ in 0 .. count {
+ x := dist.normal(mu: mu, sigma: sigma)
+ sum += x
+ dist := x - mu
+ var += dist * dist
+ }
+
+ variance := sigma * sigma
+ assert math.abs(f64(sum / count) - mu) / sigma < 1
+ assert math.abs(f64(var / count) - variance) / variance < 2 * error
+ }
+ }
+ }
+}
+
+fn test_exponential() {
+ lambdas := [1.0, 10, 1 / 20.0, 1 / 10000.0, 1 / 524.0, 200]
+
+ for seed in seeds {
+ rand.seed(seed)
+ for lambda in lambdas {
+ mu := 1 / lambda
+ variance := mu * mu
+ mut sum := 0.0
+ mut var := 0.0
+ for _ in 0 .. count {
+ x := dist.exponential(lambda)
+ sum += x
+ dist := x - mu
+ var += dist * dist
+ }
+
+ assert math.abs((f64(sum / count) - mu) / mu) < error
+ assert math.abs((f64(var / count) - variance) / variance) < 2 * error
+ }
+ }
+}