diff options
Diffstat (limited to 'v_windows/v/old/examples/flappylearning/modules')
-rw-r--r-- | v_windows/v/old/examples/flappylearning/modules/neuroevolution/neuronevolution.v | 287 |
1 files changed, 287 insertions, 0 deletions
diff --git a/v_windows/v/old/examples/flappylearning/modules/neuroevolution/neuronevolution.v b/v_windows/v/old/examples/flappylearning/modules/neuroevolution/neuronevolution.v new file mode 100644 index 0000000..f3839ee --- /dev/null +++ b/v_windows/v/old/examples/flappylearning/modules/neuroevolution/neuronevolution.v @@ -0,0 +1,287 @@ +module neuroevolution + +import rand +import math + +fn random_clamped() f64 { + return rand.f64() * 2 - 1 +} + +pub fn activation(a f64) f64 { + ap := (-a) / 1 + return (1 / (1 + math.exp(ap))) +} + +fn round(a int, b f64) int { + return int(math.round(f64(a) * b)) +} + +struct Neuron { +mut: + value f64 + weights []f64 +} + +fn (mut n Neuron) populate(nb int) { + for _ in 0 .. nb { + n.weights << random_clamped() + } +} + +struct Layer { + id int +mut: + neurons []Neuron +} + +fn (mut l Layer) populate(nb_neurons int, nb_inputs int) { + for _ in 0 .. nb_neurons { + mut n := Neuron{} + n.populate(nb_inputs) + l.neurons << n + } +} + +struct Network { +mut: + layers []Layer +} + +fn (mut n Network) populate(network []int) { + assert network.len >= 2 + input := network[0] + hiddens := network[1..network.len - 1] + output := network[network.len - 1] + mut index := 0 + mut previous_neurons := 0 + mut input_layer := Layer{ + id: index + } + input_layer.populate(input, previous_neurons) + n.layers << input_layer + previous_neurons = input + index++ + for hidden in hiddens { + mut hidden_layer := Layer{ + id: index + } + hidden_layer.populate(hidden, previous_neurons) + previous_neurons = hidden + n.layers << hidden_layer + index++ + } + mut output_layer := Layer{ + id: index + } + output_layer.populate(output, previous_neurons) + n.layers << output_layer +} + +fn (n Network) get_save() Save { + mut save := Save{} + for layer in n.layers { + save.neurons << layer.neurons.len + for neuron in layer.neurons { + for weight in neuron.weights { + save.weights << weight + } + } + } + return save +} + +fn (mut n Network) set_save(save Save) { + mut previous_neurons := 0 + mut index := 0 + mut index_weights := 0 + n.layers = [] + for save_neuron in save.neurons { + mut layer := Layer{ + id: index + } + layer.populate(save_neuron, previous_neurons) + for mut neuron in layer.neurons { + for i in 0 .. neuron.weights.len { + neuron.weights[i] = save.weights[index_weights] + index_weights++ + } + } + previous_neurons = save_neuron + index++ + n.layers << layer + } +} + +pub fn (mut n Network) compute(inputs []f64) []f64 { + assert n.layers.len > 0 + assert inputs.len == n.layers[0].neurons.len + for i, input in inputs { + n.layers[0].neurons[i].value = input + } + mut prev_layer := n.layers[0] + for i in 1 .. n.layers.len { + for j, neuron in n.layers[i].neurons { + mut sum := f64(0) + for k, prev_layer_neuron in prev_layer.neurons { + sum += prev_layer_neuron.value * neuron.weights[k] + } + n.layers[i].neurons[j].value = activation(sum) + } + prev_layer = n.layers[i] + } + mut outputs := []f64{} + mut last_layer := n.layers[n.layers.len - 1] + for neuron in last_layer.neurons { + outputs << neuron.value + } + return outputs +} + +struct Save { +mut: + neurons []int + weights []f64 +} + +fn (s Save) clone() Save { + mut save := Save{} + save.neurons << s.neurons + save.weights << s.weights + return save +} + +struct Genome { + score int + network Save +} + +struct Generation { +mut: + genomes []Genome +} + +fn (mut g Generation) add_genome(genome Genome) { + mut i := 0 + for gg in g.genomes { + if genome.score > gg.score { + break + } + i++ + } + g.genomes.insert(i, genome) +} + +fn (g1 Genome) breed(g2 Genome, nb_child int) []Save { + mut datas := []Save{} + for _ in 0 .. nb_child { + mut data := g1.network.clone() + for i, weight in g2.network.weights { + if rand.f64() <= 0.5 { + data.weights[i] = weight + } + } + for i, _ in data.weights { + if rand.f64() <= 0.1 { + data.weights[i] += (rand.f64() * 2 - 1) * 0.5 + } + } + datas << data + } + return datas +} + +fn (g Generation) next(population int) []Save { + mut nexts := []Save{} + if population == 0 { + return nexts + } + keep := round(population, 0.2) + for i in 0 .. keep { + if nexts.len < population { + nexts << g.genomes[i].network.clone() + } + } + random := round(population, 0.2) + for _ in 0 .. random { + if nexts.len < population { + mut n := g.genomes[0].network.clone() + for k, _ in n.weights { + n.weights[k] = random_clamped() + } + nexts << n + } + } + mut max := 0 + out: for { + for i in 0 .. max { + mut childs := g.genomes[i].breed(g.genomes[max], 1) + for c in childs { + nexts << c + if nexts.len >= population { + break out + } + } + } + max++ + if max >= g.genomes.len - 1 { + max = 0 + } + } + return nexts +} + +pub struct Generations { +pub: + population int + network []int +mut: + generations []Generation +} + +fn (mut gs Generations) first() []Save { + mut out := []Save{} + for _ in 0 .. gs.population { + mut nn := Network{} + nn.populate(gs.network) + out << nn.get_save() + } + gs.generations << Generation{} + return out +} + +fn (mut gs Generations) next() []Save { + assert gs.generations.len > 0 + gen := gs.generations[gs.generations.len - 1].next(gs.population) + gs.generations << Generation{} + return gen +} + +fn (mut gs Generations) add_genome(genome Genome) { + assert gs.generations.len > 0 + gs.generations[gs.generations.len - 1].add_genome(genome) +} + +fn (mut gs Generations) restart() { + gs.generations = [] +} + +pub fn (mut gs Generations) generate() []Network { + saves := if gs.generations.len == 0 { gs.first() } else { gs.next() } + mut nns := []Network{} + for save in saves { + mut nn := Network{} + nn.set_save(save) + nns << nn + } + if gs.generations.len >= 2 { + gs.generations.delete(0) + } + return nns +} + +pub fn (mut gs Generations) network_score(network Network, score int) { + gs.add_genome(Genome{ + score: score + network: network.get_save() + }) +} |