diff options
Diffstat (limited to 'v_windows/v/old/vlib/bitfield/bitfield.v')
-rw-r--r-- | v_windows/v/old/vlib/bitfield/bitfield.v | 569 |
1 files changed, 569 insertions, 0 deletions
diff --git a/v_windows/v/old/vlib/bitfield/bitfield.v b/v_windows/v/old/vlib/bitfield/bitfield.v new file mode 100644 index 0000000..9ed4e2b --- /dev/null +++ b/v_windows/v/old/vlib/bitfield/bitfield.v @@ -0,0 +1,569 @@ +module bitfield + +/* +bitfield is a module for +manipulating arrays of bits, i.e. series of zeroes and ones spread across an +array of storage units (unsigned 32-bit integers). + +BitField structure +------------------ + +Bit arrays are stored in data structures called 'BitField'. The structure is +'opaque', i.e. its internals are not available to the end user. This module +provides API (functions and methods) for accessing and modifying bit arrays. +*/ +pub struct BitField { +mut: + size int + // field *u32 + field []u32 +} + +// helper functions +const ( + slot_size = 32 +) + +// from_bytes converts a byte array into a bitfield. +// [0x0F, 0x01] => 0000 1111 0000 0001 +pub fn from_bytes(input []byte) BitField { + mut output := new(input.len * 8) + for i, b in input { + mut ob := byte(0) + if b & 0b10000000 > 0 { + ob |= 0b00000001 + } + if b & 0b01000000 > 0 { + ob |= 0b00000010 + } + if b & 0b00100000 > 0 { + ob |= 0b00000100 + } + if b & 0b00010000 > 0 { + ob |= 0b00001000 + } + if b & 0b00001000 > 0 { + ob |= 0b00010000 + } + if b & 0b00000100 > 0 { + ob |= 0b00100000 + } + if b & 0b00000010 > 0 { + ob |= 0b01000000 + } + if b & 0b00000001 > 0 { + ob |= 0b10000000 + } + output.field[i / 4] |= u32(ob) << ((i % 4) * 8) + } + return output +} + +// from_bytes_lowest_bits_first converts a byte array into a bitfield +// [0x0F, 0x01] => 1111 0000 1000 0000 +pub fn from_bytes_lowest_bits_first(input []byte) BitField { + mut output := new(input.len * 8) + for i, b in input { + output.field[i / 4] |= u32(b) << ((i % 4) * 8) + } + return output +} + +// from_str converts a string of characters ('0' and '1') to a bit +// array. Any character different from '0' is treated as '1'. +pub fn from_str(input string) BitField { + mut output := new(input.len) + for i in 0 .. input.len { + if input[i] != `0` { + output.set_bit(i) + } + } + return output +} + +// str converts the bit array to a string of characters ('0' and '1') and +// return the string +pub fn (input BitField) str() string { + mut output := '' + for i in 0 .. input.size { + if input.get_bit(i) == 1 { + output = output + '1' + } else { + output = output + '0' + } + } + return output +} + +// new creates an empty bit array of capable of storing 'size' bits. +pub fn new(size int) BitField { + output := BitField{ + size: size + // field: *u32(calloc(zbitnslots(size) * slot_size / 8)) + field: []u32{len: zbitnslots(size)} + } + return output +} + +// frees the memory allocated for the bitfield instance +[unsafe] +pub fn (instance &BitField) free() { + unsafe { + instance.field.free() + } +} + +// get_bit returns the value (0 or 1) of bit number 'bit_nr' (count from 0). +pub fn (instance BitField) get_bit(bitnr int) int { + if bitnr >= instance.size { + return 0 + } + return int((instance.field[bitslot(bitnr)] >> (bitnr % bitfield.slot_size)) & u32(1)) +} + +// set_bit sets bit number 'bit_nr' to 1 (count from 0). +pub fn (mut instance BitField) set_bit(bitnr int) { + if bitnr >= instance.size { + return + } + instance.field[bitslot(bitnr)] |= bitmask(bitnr) +} + +// clear_bit clears (sets to zero) bit number 'bit_nr' (count from 0). +pub fn (mut instance BitField) clear_bit(bitnr int) { + if bitnr >= instance.size { + return + } + instance.field[bitslot(bitnr)] &= ~bitmask(bitnr) +} + +// extract returns the value converted from a slice of bit numbers +// from 'start' by the length of 'len'. +// 0101 (1, 2) => 0b10 +pub fn (instance BitField) extract(start int, len int) u64 { + // panic? + if start < 0 { + return 0 + } + mut output := u64(0) + for i in 0 .. len { + output |= u64(instance.get_bit(start + len - i - 1)) << i + } + return output +} + +// insert sets bit numbers from 'start' to 'len' length with +// the value converted from the number 'value'. +// 0000 (1, 2, 0b10) => 0100 +pub fn (mut instance BitField) insert<T>(start int, len int, _value T) { + // panic? + if start < 0 { + return + } + mut value := _value + for i in 0 .. len { + pos := start + len - i - 1 + if value & 1 == 1 { + instance.set_bit(pos) + } else { + instance.clear_bit(pos) + } + value >>= 1 + } +} + +// extract returns the value converted from a slice of bit numbers +// from 'start' by the length of 'len'. +// 0101 (1, 2) => 0b01 +pub fn (instance BitField) extract_lowest_bits_first(start int, len int) u64 { + // panic? + if start < 0 { + return 0 + } + mut output := u64(0) + for i in 0 .. len { + output |= u64(instance.get_bit(start + i)) << i + } + return output +} + +// insert sets bit numbers from 'start' to 'len' length with +// the value converted from the number 'value'. +// 0000 (1, 2, 0b10) => 0010 +pub fn (mut instance BitField) insert_lowest_bits_first<T>(start int, len int, _value T) { + // panic? + if start < 0 { + return + } + mut value := _value + for pos in start .. start + len { + if value & 1 == 1 { + instance.set_bit(pos) + } else { + instance.clear_bit(pos) + } + value >>= 1 + } +} + +// set_all sets all bits in the array to 1. +pub fn (mut instance BitField) set_all() { + for i in 0 .. zbitnslots(instance.size) { + instance.field[i] = u32(-1) + } + instance.clear_tail() +} + +// clear_all clears (sets to zero) all bits in the array. +pub fn (mut instance BitField) clear_all() { + for i in 0 .. zbitnslots(instance.size) { + instance.field[i] = u32(0) + } +} + +// toggle_bit changes the value (from 0 to 1 or from 1 to 0) of bit +// number 'bit_nr'. +pub fn (mut instance BitField) toggle_bit(bitnr int) { + if bitnr >= instance.size { + return + } + instance.field[bitslot(bitnr)] ^= bitmask(bitnr) +} + +// bf_and performs logical AND operation on every pair of bits from 'input1' and +// 'input2' and returns the result as a new array. If inputs differ in size, +// the tail of the longer one is ignored. +pub fn bf_and(input1 BitField, input2 BitField) BitField { + size := min(input1.size, input2.size) + bitnslots := zbitnslots(size) + mut output := new(size) + for i in 0 .. bitnslots { + output.field[i] = input1.field[i] & input2.field[i] + } + output.clear_tail() + return output +} + +// bf_not toggles all bits in a bit array and returns the result as a new array. +pub fn bf_not(input BitField) BitField { + size := input.size + bitnslots := zbitnslots(size) + mut output := new(size) + for i in 0 .. bitnslots { + output.field[i] = ~input.field[i] + } + output.clear_tail() + return output +} + +// bf_or performs logical OR operation on every pair of bits from 'input1' and +// 'input2' and returns the result as a new array. If inputs differ in size, +// the tail of the longer one is ignored. +pub fn bf_or(input1 BitField, input2 BitField) BitField { + size := min(input1.size, input2.size) + bitnslots := zbitnslots(size) + mut output := new(size) + for i in 0 .. bitnslots { + output.field[i] = input1.field[i] | input2.field[i] + } + output.clear_tail() + return output +} + +// bf_xor perform logical XOR operation on every pair of bits from 'input1' and +// 'input2' and returns the result as a new array. If inputs differ in size, +// the tail of the longer one is ignored. +pub fn bf_xor(input1 BitField, input2 BitField) BitField { + size := min(input1.size, input2.size) + bitnslots := zbitnslots(size) + mut output := new(size) + for i in 0 .. bitnslots { + output.field[i] = input1.field[i] ^ input2.field[i] + } + output.clear_tail() + return output +} + +// join concatenates two bit arrays and return the result as a new array. +pub fn join(input1 BitField, input2 BitField) BitField { + output_size := input1.size + input2.size + mut output := new(output_size) + // copy the first input to output as is + for i in 0 .. zbitnslots(input1.size) { + output.field[i] = input1.field[i] + } + // find offset bit and offset slot + offset_bit := input1.size % bitfield.slot_size + offset_slot := input1.size / bitfield.slot_size + for i in 0 .. zbitnslots(input2.size) { + output.field[i + offset_slot] |= u32(input2.field[i] << u32(offset_bit)) + } + /* + * If offset_bit is not zero, additional operations are needed. + * Number of iterations depends on the nr of slots in output. Two + * options: + * (a) nr of slots in output is the sum of inputs' slots. In this + * case, the nr of bits in the last slot of output is less than the + * nr of bits in the second input (i.e. ), OR + * (b) nr of slots of output is the sum of inputs' slots less one + * (i.e. less iterations needed). In this case, the nr of bits in + * the last slot of output is greater than the nr of bits in the second + * input. + * If offset_bit is zero, no additional copies needed. + */ + if (output_size - 1) % bitfield.slot_size < (input2.size - 1) % bitfield.slot_size { + for i in 0 .. zbitnslots(input2.size) { + output.field[i + offset_slot + 1] |= u32(input2.field[i] >> u32(bitfield.slot_size - offset_bit)) + } + } else if (output_size - 1) % bitfield.slot_size > (input2.size - 1) % bitfield.slot_size { + for i in 0 .. zbitnslots(input2.size) - 1 { + output.field[i + offset_slot + 1] |= u32(input2.field[i] >> u32(bitfield.slot_size - offset_bit)) + } + } + return output +} + +// get_size returns the number of bits the array can hold. +pub fn (instance BitField) get_size() int { + return instance.size +} + +// clone creates a copy of a bit array. +pub fn (instance BitField) clone() BitField { + bitnslots := zbitnslots(instance.size) + mut output := new(instance.size) + for i in 0 .. bitnslots { + output.field[i] = instance.field[i] + } + return output +} + +// cmp compares two bit arrays bit by bit and returns 'true' if they are +// identical by length and contents and 'false' otherwise. +[deprecated: 'use a == b instead'] +[deprecated_after: '2021-06-29'] +pub fn (instance BitField) cmp(input BitField) bool { + if instance.size != input.size { + return false + } + for i in 0 .. zbitnslots(instance.size) { + if instance.field[i] != input.field[i] { + return false + } + } + return true +} + +pub fn (a BitField) == (b BitField) bool { + if a.size != b.size { + return false + } + for i in 0 .. zbitnslots(a.size) { + if a.field[i] != b.field[i] { + return false + } + } + return true +} + +// pop_count returns the number of set bits (ones) in the array. +pub fn (instance BitField) pop_count() int { + size := instance.size + bitnslots := zbitnslots(size) + tail := size % bitfield.slot_size + mut count := 0 + for i in 0 .. bitnslots - 1 { + for j in 0 .. bitfield.slot_size { + if u32(instance.field[i] >> u32(j)) & u32(1) == u32(1) { + count++ + } + } + } + for j in 0 .. tail { + if u32(instance.field[bitnslots - 1] >> u32(j)) & u32(1) == u32(1) { + count++ + } + } + return count +} + +// hamming computes the Hamming distance between two bit arrays. +pub fn hamming(input1 BitField, input2 BitField) int { + input_xored := bf_xor(input1, input2) + return input_xored.pop_count() +} + +// pos checks if the array contains a sub-array 'needle' and returns its +// position if it does, -1 if it does not, and -2 on error. +pub fn (haystack BitField) pos(needle BitField) int { + heystack_size := haystack.size + needle_size := needle.size + diff := heystack_size - needle_size + // needle longer than haystack; return error code -2 + if diff < 0 { + return -2 + } + for i := 0; i <= diff; i++ { + needle_candidate := haystack.slice(i, needle_size + i) + if needle_candidate == needle { + // needle matches a sub-array of haystack; return starting position of the sub-array + return i + } + } + // nothing matched; return -1 + return -1 +} + +// slice returns a sub-array of bits between 'start_bit_nr' (included) and +// 'end_bit_nr' (excluded). +pub fn (input BitField) slice(_start int, _end int) BitField { + // boundary checks + mut start := _start + mut end := _end + if end > input.size { + end = input.size // or panic? + } + if start > end { + start = end // or panic? + } + mut output := new(end - start) + start_offset := start % bitfield.slot_size + end_offset := (end - 1) % bitfield.slot_size + start_slot := start / bitfield.slot_size + end_slot := (end - 1) / bitfield.slot_size + output_slots := zbitnslots(end - start) + if output_slots > 1 { + if start_offset != 0 { + for i in 0 .. output_slots - 1 { + output.field[i] = u32(input.field[start_slot + i] >> u32(start_offset)) + output.field[i] = output.field[i] | u32(input.field[start_slot + i + 1] << u32(bitfield.slot_size - start_offset)) + } + } else { + for i in 0 .. output_slots - 1 { + output.field[i] = u32(input.field[start_slot + i]) + } + } + } + if start_offset > end_offset { + output.field[(end - start - 1) / bitfield.slot_size] = u32(input.field[end_slot - 1] >> u32(start_offset)) + mut mask := u32((1 << (end_offset + 1)) - 1) + mask = input.field[end_slot] & mask + mask = u32(mask << u32(bitfield.slot_size - start_offset)) + output.field[(end - start - 1) / bitfield.slot_size] |= mask + } else if start_offset == 0 { + mut mask := u32(0) + if end_offset == bitfield.slot_size - 1 { + mask = u32(-1) + } else { + mask = u32(u32(1) << u32(end_offset + 1)) + mask = mask - u32(1) + } + output.field[(end - start - 1) / bitfield.slot_size] = (input.field[end_slot] & mask) + } else { + mut mask := u32(((1 << (end_offset - start_offset + 1)) - 1) << start_offset) + mask = input.field[end_slot] & mask + mask = u32(mask >> u32(start_offset)) + output.field[(end - start - 1) / bitfield.slot_size] |= mask + } + return output +} + +// reverse reverses the order of bits in the array (swap the first with the +// last, the second with the last but one and so on). +pub fn (instance BitField) reverse() BitField { + size := instance.size + bitnslots := zbitnslots(size) + mut output := new(size) + for i := 0; i < (bitnslots - 1); i++ { + for j in 0 .. bitfield.slot_size { + if u32(instance.field[i] >> u32(j)) & u32(1) == u32(1) { + output.set_bit(size - i * bitfield.slot_size - j - 1) + } + } + } + bits_in_last_input_slot := (size - 1) % bitfield.slot_size + 1 + for j in 0 .. bits_in_last_input_slot { + if u32(instance.field[bitnslots - 1] >> u32(j)) & u32(1) == u32(1) { + output.set_bit(bits_in_last_input_slot - j - 1) + } + } + return output +} + +// resize changes the size of the bit array to 'new_size'. +pub fn (mut instance BitField) resize(new_size int) { + new_bitnslots := zbitnslots(new_size) + old_size := instance.size + old_bitnslots := zbitnslots(old_size) + mut field := []u32{len: new_bitnslots} + for i := 0; i < old_bitnslots && i < new_bitnslots; i++ { + field[i] = instance.field[i] + } + instance.field = field.clone() + instance.size = new_size + if new_size < old_size && new_size % bitfield.slot_size != 0 { + instance.clear_tail() + } +} + +// rotate circular-shifts the bits by 'offset' positions (move +// 'offset' bit to 0, 'offset+1' bit to 1, and so on). +pub fn (instance BitField) rotate(offset int) BitField { + /* + * + * This function "cuts" the bitfield into two and swaps them. + * If the offset is positive, the cutting point is counted from the + * beginning of the bit array, otherwise from the end. + * + */ + size := instance.size + // removing extra rotations + mut offset_internal := offset % size + if offset_internal == 0 { + // nothing to shift + return instance + } + if offset_internal < 0 { + offset_internal = offset_internal + size + } + first_chunk := instance.slice(0, offset_internal) + second_chunk := instance.slice(offset_internal, size) + output := join(second_chunk, first_chunk) + return output +} + +// Internal functions +// clear_tail clears the extra bits that are not part of the bitfield, but yet are allocated +fn (mut instance BitField) clear_tail() { + tail := instance.size % bitfield.slot_size + if tail != 0 { + // create a mask for the tail + mask := u32((1 << tail) - 1) + // clear the extra bits + instance.field[zbitnslots(instance.size) - 1] = instance.field[zbitnslots(instance.size) - 1] & mask + } +} + +// bitmask is the bitmask needed to access a particular bit at offset bitnr +fn bitmask(bitnr int) u32 { + return u32(u32(1) << u32(bitnr % bitfield.slot_size)) +} + +// bitslot is the slot index (i.e. the integer) where a particular bit is located +fn bitslot(size int) int { + return size / bitfield.slot_size +} + +// min returns the minimum of 2 integers; it is here to avoid importing math just for that +fn min(input1 int, input2 int) int { + if input1 < input2 { + return input1 + } else { + return input2 + } +} + +// zbitnslots returns the minimum number of whole integers, needed to represent a bitfield of size length +fn zbitnslots(length int) int { + return (length - 1) / bitfield.slot_size + 1 +} |