aboutsummaryrefslogtreecommitdiff
path: root/v_windows/v/old/vlib/builtin/array.v
diff options
context:
space:
mode:
Diffstat (limited to 'v_windows/v/old/vlib/builtin/array.v')
-rw-r--r--v_windows/v/old/vlib/builtin/array.v664
1 files changed, 664 insertions, 0 deletions
diff --git a/v_windows/v/old/vlib/builtin/array.v b/v_windows/v/old/vlib/builtin/array.v
new file mode 100644
index 0000000..99055f3
--- /dev/null
+++ b/v_windows/v/old/vlib/builtin/array.v
@@ -0,0 +1,664 @@
+// Copyright (c) 2019-2021 Alexander Medvednikov. All rights reserved.
+// Use of this source code is governed by an MIT license
+// that can be found in the LICENSE file.
+module builtin
+
+import strings
+
+// array is a struct used for denoting array types in V
+pub struct array {
+pub:
+ element_size int // size in bytes of one element in the array.
+pub mut:
+ data voidptr
+ offset int // in bytes (should be `size_t`)
+ len int // length of the array.
+ cap int // capacity of the array.
+}
+
+// array.data uses a void pointer, which allows implementing arrays without generics and without generating
+// extra code for every type.
+// Internal function, used by V (`nums := []int`)
+fn __new_array(mylen int, cap int, elm_size int) array {
+ cap_ := if cap < mylen { mylen } else { cap }
+ arr := array{
+ element_size: elm_size
+ data: vcalloc(cap_ * elm_size)
+ len: mylen
+ cap: cap_
+ }
+ return arr
+}
+
+fn __new_array_with_default(mylen int, cap int, elm_size int, val voidptr) array {
+ cap_ := if cap < mylen { mylen } else { cap }
+ mut arr := array{
+ element_size: elm_size
+ data: vcalloc(cap_ * elm_size)
+ len: mylen
+ cap: cap_
+ }
+ if val != 0 {
+ for i in 0 .. arr.len {
+ unsafe { arr.set_unsafe(i, val) }
+ }
+ }
+ return arr
+}
+
+fn __new_array_with_array_default(mylen int, cap int, elm_size int, val array) array {
+ cap_ := if cap < mylen { mylen } else { cap }
+ mut arr := array{
+ element_size: elm_size
+ data: vcalloc(cap_ * elm_size)
+ len: mylen
+ cap: cap_
+ }
+ for i in 0 .. arr.len {
+ val_clone := unsafe { val.clone_to_depth(1) }
+ unsafe { arr.set_unsafe(i, &val_clone) }
+ }
+ return arr
+}
+
+// Private function, used by V (`nums := [1, 2, 3]`)
+fn new_array_from_c_array(len int, cap int, elm_size int, c_array voidptr) array {
+ cap_ := if cap < len { len } else { cap }
+ arr := array{
+ element_size: elm_size
+ data: vcalloc(cap_ * elm_size)
+ len: len
+ cap: cap_
+ }
+ // TODO Write all memory functions (like memcpy) in V
+ unsafe { C.memcpy(arr.data, c_array, len * elm_size) }
+ return arr
+}
+
+// Private function, used by V (`nums := [1, 2, 3] !`)
+fn new_array_from_c_array_no_alloc(len int, cap int, elm_size int, c_array voidptr) array {
+ arr := array{
+ element_size: elm_size
+ data: c_array
+ len: len
+ cap: cap
+ }
+ return arr
+}
+
+// Private function. Doubles array capacity if needed.
+fn (mut a array) ensure_cap(required int) {
+ if required <= a.cap {
+ return
+ }
+ mut cap := if a.cap > 0 { a.cap } else { 2 }
+ for required > cap {
+ cap *= 2
+ }
+ new_size := cap * a.element_size
+ new_data := vcalloc(new_size)
+ if a.data != voidptr(0) {
+ unsafe { C.memcpy(new_data, a.data, a.len * a.element_size) }
+ // TODO: the old data may be leaked when no GC is used (ref-counting?)
+ }
+ a.data = new_data
+ a.offset = 0
+ a.cap = cap
+}
+
+// repeat returns a new array with the given array elements repeated given times.
+// `cgen` will replace this with an apropriate call to `repeat_to_depth()`
+
+// This is a dummy placeholder that will be overridden by `cgen` with an appropriate
+// call to `repeat_to_depth()`. However the `checker` needs it here.
+pub fn (a array) repeat(count int) array {
+ return unsafe { a.repeat_to_depth(count, 0) }
+}
+
+// version of `repeat()` that handles multi dimensional arrays
+// `unsafe` to call directly because `depth` is not checked
+[unsafe]
+pub fn (a array) repeat_to_depth(count int, depth int) array {
+ if count < 0 {
+ panic('array.repeat: count is negative: $count')
+ }
+ mut size := count * a.len * a.element_size
+ if size == 0 {
+ size = a.element_size
+ }
+ arr := array{
+ element_size: a.element_size
+ data: vcalloc(size)
+ len: count * a.len
+ cap: count * a.len
+ }
+ if a.len > 0 {
+ for i in 0 .. count {
+ if depth > 0 {
+ ary_clone := unsafe { a.clone_to_depth(depth) }
+ unsafe { C.memcpy(arr.get_unsafe(i * a.len), &byte(ary_clone.data), a.len * a.element_size) }
+ } else {
+ unsafe { C.memcpy(arr.get_unsafe(i * a.len), &byte(a.data), a.len * a.element_size) }
+ }
+ }
+ }
+ return arr
+}
+
+// sort_with_compare sorts array in-place using given `compare` function as comparator.
+pub fn (mut a array) sort_with_compare(compare voidptr) {
+ $if freestanding {
+ panic('sort does not work with -freestanding')
+ } $else {
+ C.qsort(mut a.data, a.len, a.element_size, compare)
+ }
+}
+
+// insert inserts a value in the array at index `i`
+pub fn (mut a array) insert(i int, val voidptr) {
+ $if !no_bounds_checking ? {
+ if i < 0 || i > a.len {
+ panic('array.insert: index out of range (i == $i, a.len == $a.len)')
+ }
+ }
+ a.ensure_cap(a.len + 1)
+ unsafe {
+ C.memmove(a.get_unsafe(i + 1), a.get_unsafe(i), (a.len - i) * a.element_size)
+ a.set_unsafe(i, val)
+ }
+ a.len++
+}
+
+// insert_many inserts many values into the array from index `i`.
+[unsafe]
+pub fn (mut a array) insert_many(i int, val voidptr, size int) {
+ $if !no_bounds_checking ? {
+ if i < 0 || i > a.len {
+ panic('array.insert_many: index out of range (i == $i, a.len == $a.len)')
+ }
+ }
+ a.ensure_cap(a.len + size)
+ elem_size := a.element_size
+ unsafe {
+ iptr := a.get_unsafe(i)
+ C.memmove(a.get_unsafe(i + size), iptr, (a.len - i) * elem_size)
+ C.memcpy(iptr, val, size * elem_size)
+ }
+ a.len += size
+}
+
+// prepend prepends one value to the array.
+pub fn (mut a array) prepend(val voidptr) {
+ a.insert(0, val)
+}
+
+// prepend_many prepends another array to this array.
+[unsafe]
+pub fn (mut a array) prepend_many(val voidptr, size int) {
+ unsafe { a.insert_many(0, val, size) }
+}
+
+// delete deletes array element at index `i`.
+pub fn (mut a array) delete(i int) {
+ a.delete_many(i, 1)
+}
+
+// delete_many deletes `size` elements beginning with index `i`
+pub fn (mut a array) delete_many(i int, size int) {
+ $if !no_bounds_checking ? {
+ if i < 0 || i + size > a.len {
+ endidx := if size > 1 { '..${i + size}' } else { '' }
+ panic('array.delete: index out of range (i == $i$endidx, a.len == $a.len)')
+ }
+ }
+ // NB: if a is [12,34], a.len = 2, a.delete(0)
+ // should move (2-0-1) elements = 1 element (the 34) forward
+ old_data := a.data
+ new_size := a.len - size
+ new_cap := if new_size == 0 { 1 } else { new_size }
+ a.data = vcalloc(new_cap * a.element_size)
+ unsafe { C.memcpy(a.data, old_data, i * a.element_size) }
+ unsafe {
+ C.memcpy(&byte(a.data) + i * a.element_size, &byte(old_data) + (i + size) * a.element_size,
+ (a.len - i - size) * a.element_size)
+ }
+ a.len = new_size
+ a.cap = new_cap
+}
+
+// clear clears the array without deallocating the allocated data.
+pub fn (mut a array) clear() {
+ a.len = 0
+}
+
+// trim trims the array length to "index" without modifying the allocated data. If "index" is greater
+// than len nothing will be changed.
+pub fn (mut a array) trim(index int) {
+ if index < a.len {
+ a.len = index
+ }
+}
+
+// we manually inline this for single operations for performance without -prod
+[inline; unsafe]
+fn (a array) get_unsafe(i int) voidptr {
+ unsafe {
+ return &byte(a.data) + i * a.element_size
+ }
+}
+
+// Private function. Used to implement array[] operator.
+fn (a array) get(i int) voidptr {
+ $if !no_bounds_checking ? {
+ if i < 0 || i >= a.len {
+ panic('array.get: index out of range (i == $i, a.len == $a.len)')
+ }
+ }
+ unsafe {
+ return &byte(a.data) + i * a.element_size
+ }
+}
+
+// Private function. Used to implement x = a[i] or { ... }
+fn (a array) get_with_check(i int) voidptr {
+ if i < 0 || i >= a.len {
+ return 0
+ }
+ unsafe {
+ return &byte(a.data) + i * a.element_size
+ }
+}
+
+// first returns the first element of the array.
+pub fn (a array) first() voidptr {
+ $if !no_bounds_checking ? {
+ if a.len == 0 {
+ panic('array.first: array is empty')
+ }
+ }
+ return a.data
+}
+
+// last returns the last element of the array.
+pub fn (a array) last() voidptr {
+ $if !no_bounds_checking ? {
+ if a.len == 0 {
+ panic('array.last: array is empty')
+ }
+ }
+ unsafe {
+ return &byte(a.data) + (a.len - 1) * a.element_size
+ }
+}
+
+// pop returns the last element of the array, and removes it.
+pub fn (mut a array) pop() voidptr {
+ // in a sense, this is the opposite of `a << x`
+ $if !no_bounds_checking ? {
+ if a.len == 0 {
+ panic('array.pop: array is empty')
+ }
+ }
+ new_len := a.len - 1
+ last_elem := unsafe { &byte(a.data) + new_len * a.element_size }
+ a.len = new_len
+ // NB: a.cap is not changed here *on purpose*, so that
+ // further << ops on that array will be more efficient.
+ return unsafe { memdup(last_elem, a.element_size) }
+}
+
+// delete_last efficiently deletes the last element of the array.
+pub fn (mut a array) delete_last() {
+ // copy pasting code for performance
+ $if !no_bounds_checking ? {
+ if a.len == 0 {
+ panic('array.pop: array is empty')
+ }
+ }
+ a.len--
+}
+
+// slice returns an array using the same buffer as original array
+// but starting from the `start` element and ending with the element before
+// the `end` element of the original array with the length and capacity
+// set to the number of the elements in the slice.
+fn (a array) slice(start int, _end int) array {
+ mut end := _end
+ $if !no_bounds_checking ? {
+ if start > end {
+ panic('array.slice: invalid slice index ($start > $end)')
+ }
+ if end > a.len {
+ panic('array.slice: slice bounds out of range ($end >= $a.len)')
+ }
+ if start < 0 {
+ panic('array.slice: slice bounds out of range ($start < 0)')
+ }
+ }
+ offset := start * a.element_size
+ data := unsafe { &byte(a.data) + offset }
+ l := end - start
+ res := array{
+ element_size: a.element_size
+ data: data
+ offset: a.offset + offset
+ len: l
+ cap: l
+ }
+ return res
+}
+
+// used internally for [2..4]
+fn (a array) slice2(start int, _end int, end_max bool) array {
+ end := if end_max { a.len } else { _end }
+ return a.slice(start, end)
+}
+
+// `clone_static_to_depth()` returns an independent copy of a given array.
+// Unlike `clone_to_depth()` it has a value receiver and is used internally
+// for slice-clone expressions like `a[2..4].clone()` and in -autofree generated code.
+fn (a array) clone_static_to_depth(depth int) array {
+ return unsafe { a.clone_to_depth(depth) }
+}
+
+// clone returns an independent copy of a given array.
+// this will be overwritten by `cgen` with an apropriate call to `.clone_to_depth()`
+// However the `checker` needs it here.
+pub fn (a &array) clone() array {
+ return unsafe { a.clone_to_depth(0) }
+}
+
+// recursively clone given array - `unsafe` when called directly because depth is not checked
+[unsafe]
+pub fn (a &array) clone_to_depth(depth int) array {
+ mut size := a.cap * a.element_size
+ if size == 0 {
+ size++
+ }
+ mut arr := array{
+ element_size: a.element_size
+ data: vcalloc(size)
+ len: a.len
+ cap: a.cap
+ }
+ // Recursively clone-generated elements if array element is array type
+ if depth > 0 && a.element_size == sizeof(array) && a.len >= 0 && a.cap >= a.len {
+ for i in 0 .. a.len {
+ ar := array{}
+ unsafe { C.memcpy(&ar, a.get_unsafe(i), int(sizeof(array))) }
+ ar_clone := unsafe { ar.clone_to_depth(depth - 1) }
+ unsafe { arr.set_unsafe(i, &ar_clone) }
+ }
+ return arr
+ } else {
+ if !isnil(a.data) {
+ unsafe { C.memcpy(&byte(arr.data), a.data, a.cap * a.element_size) }
+ }
+ return arr
+ }
+}
+
+// we manually inline this for single operations for performance without -prod
+[inline; unsafe]
+fn (mut a array) set_unsafe(i int, val voidptr) {
+ unsafe { C.memcpy(&byte(a.data) + a.element_size * i, val, a.element_size) }
+}
+
+// Private function. Used to implement assigment to the array element.
+fn (mut a array) set(i int, val voidptr) {
+ $if !no_bounds_checking ? {
+ if i < 0 || i >= a.len {
+ panic('array.set: index out of range (i == $i, a.len == $a.len)')
+ }
+ }
+ unsafe { C.memcpy(&byte(a.data) + a.element_size * i, val, a.element_size) }
+}
+
+fn (mut a array) push(val voidptr) {
+ a.ensure_cap(a.len + 1)
+ unsafe { C.memmove(&byte(a.data) + a.element_size * a.len, val, a.element_size) }
+ a.len++
+}
+
+// push_many implements the functionality for pushing another array.
+// `val` is array.data and user facing usage is `a << [1,2,3]`
+[unsafe]
+pub fn (mut a3 array) push_many(val voidptr, size int) {
+ if a3.data == val && !isnil(a3.data) {
+ // handle `arr << arr`
+ copy := a3.clone()
+ a3.ensure_cap(a3.len + size)
+ unsafe {
+ // C.memcpy(a.data, copy.data, copy.element_size * copy.len)
+ C.memcpy(a3.get_unsafe(a3.len), copy.data, a3.element_size * size)
+ }
+ } else {
+ a3.ensure_cap(a3.len + size)
+ if !isnil(a3.data) && !isnil(val) {
+ unsafe { C.memcpy(a3.get_unsafe(a3.len), val, a3.element_size * size) }
+ }
+ }
+ a3.len += size
+}
+
+// reverse_in_place reverses existing array data, modifying original array.
+pub fn (mut a array) reverse_in_place() {
+ if a.len < 2 {
+ return
+ }
+ unsafe {
+ mut tmp_value := malloc(a.element_size)
+ for i in 0 .. a.len / 2 {
+ C.memcpy(tmp_value, &byte(a.data) + i * a.element_size, a.element_size)
+ C.memcpy(&byte(a.data) + i * a.element_size, &byte(a.data) +
+ (a.len - 1 - i) * a.element_size, a.element_size)
+ C.memcpy(&byte(a.data) + (a.len - 1 - i) * a.element_size, tmp_value, a.element_size)
+ }
+ free(tmp_value)
+ }
+}
+
+// reverse returns a new array with the elements of the original array in reverse order.
+pub fn (a array) reverse() array {
+ if a.len < 2 {
+ return a
+ }
+ mut arr := array{
+ element_size: a.element_size
+ data: vcalloc(a.cap * a.element_size)
+ len: a.len
+ cap: a.cap
+ }
+ for i in 0 .. a.len {
+ unsafe { arr.set_unsafe(i, a.get_unsafe(a.len - 1 - i)) }
+ }
+ return arr
+}
+
+// pub fn (a []int) free() {
+// free frees all memory occupied by the array.
+[unsafe]
+pub fn (a &array) free() {
+ $if prealloc {
+ return
+ }
+ // if a.is_slice {
+ // return
+ // }
+ unsafe { free(&byte(a.data) - a.offset) }
+}
+
+[unsafe]
+pub fn (mut a []string) free() {
+ $if prealloc {
+ return
+ }
+ for s in a {
+ unsafe { s.free() }
+ }
+ unsafe { free(a.data) }
+}
+
+// str returns a string representation of the array of strings
+// => '["a", "b", "c"]'.
+[manualfree]
+pub fn (a []string) str() string {
+ mut sb := strings.new_builder(a.len * 3)
+ sb.write_string('[')
+ for i in 0 .. a.len {
+ val := a[i]
+ sb.write_string("'")
+ sb.write_string(val)
+ sb.write_string("'")
+ if i < a.len - 1 {
+ sb.write_string(', ')
+ }
+ }
+ sb.write_string(']')
+ res := sb.str()
+ unsafe { sb.free() }
+ return res
+}
+
+// hex returns a string with the hexadecimal representation
+// of the byte elements of the array.
+pub fn (b []byte) hex() string {
+ mut hex := unsafe { malloc(b.len * 2 + 1) }
+ mut dst_i := 0
+ for i in b {
+ n0 := i >> 4
+ unsafe {
+ hex[dst_i] = if n0 < 10 { n0 + `0` } else { n0 + byte(87) }
+ dst_i++
+ }
+ n1 := i & 0xF
+ unsafe {
+ hex[dst_i] = if n1 < 10 { n1 + `0` } else { n1 + byte(87) }
+ dst_i++
+ }
+ }
+ unsafe {
+ hex[dst_i] = 0
+ return tos(hex, dst_i)
+ }
+}
+
+// copy copies the `src` byte array elements to the `dst` byte array.
+// The number of the elements copied is the minimum of the length of both arrays.
+// Returns the number of elements copied.
+// TODO: implement for all types
+pub fn copy(dst []byte, src []byte) int {
+ min := if dst.len < src.len { dst.len } else { src.len }
+ if min > 0 {
+ unsafe { C.memcpy(&byte(dst.data), src.data, min) }
+ }
+ return min
+}
+
+// Private function. Comparator for int type.
+fn compare_ints(a &int, b &int) int {
+ if *a < *b {
+ return -1
+ }
+ if *a > *b {
+ return 1
+ }
+ return 0
+}
+
+fn compare_ints_reverse(a &int, b &int) int {
+ if *a > *b {
+ return -1
+ }
+ if *a < *b {
+ return 1
+ }
+ return 0
+}
+
+// sort sorts an array of int in place in ascending order.
+pub fn (mut a []int) sort() {
+ a.sort_with_compare(compare_ints)
+}
+
+// index returns the first index at which a given element can be found in the array
+// or -1 if the value is not found.
+[direct_array_access]
+pub fn (a []string) index(v string) int {
+ for i in 0 .. a.len {
+ if a[i] == v {
+ return i
+ }
+ }
+ return -1
+}
+
+// reduce executes a given reducer function on each element of the array,
+// resulting in a single output value.
+pub fn (a []int) reduce(iter fn (int, int) int, accum_start int) int {
+ mut accum_ := accum_start
+ for i in a {
+ accum_ = iter(accum_, i)
+ }
+ return accum_
+}
+
+// grow_cap grows the array's capacity by `amount` elements.
+pub fn (mut a array) grow_cap(amount int) {
+ a.ensure_cap(a.cap + amount)
+}
+
+// grow_len ensures that an array has a.len + amount of length
+[unsafe]
+pub fn (mut a array) grow_len(amount int) {
+ a.ensure_cap(a.len + amount)
+ a.len += amount
+}
+
+// eq checks if the arrays have the same elements or not.
+// TODO: make it work with all types.
+pub fn (a1 []string) eq(a2 []string) bool {
+ // return array_eq(a, a2)
+ if a1.len != a2.len {
+ return false
+ }
+ size_of_string := int(sizeof(string))
+ for i in 0 .. a1.len {
+ offset := i * size_of_string
+ s1 := unsafe { &string(&byte(a1.data) + offset) }
+ s2 := unsafe { &string(&byte(a2.data) + offset) }
+ if *s1 != *s2 {
+ return false
+ }
+ }
+ return true
+}
+
+// pointers returns a new array, where each element
+// is the address of the corresponding element in the array.
+[unsafe]
+pub fn (a array) pointers() []voidptr {
+ mut res := []voidptr{}
+ for i in 0 .. a.len {
+ unsafe { res << a.get_unsafe(i) }
+ }
+ return res
+}
+
+// voidptr.vbytes() - makes a V []byte structure from a C style memory buffer. NB: the data is reused, NOT copied!
+[unsafe]
+pub fn (data voidptr) vbytes(len int) []byte {
+ res := array{
+ element_size: 1
+ data: data
+ len: len
+ cap: len
+ }
+ return res
+}
+
+// byteptr.vbytes() - makes a V []byte structure from a C style memory buffer. NB: the data is reused, NOT copied!
+[unsafe]
+pub fn (data &byte) vbytes(len int) []byte {
+ return unsafe { voidptr(data).vbytes(len) }
+}