diff options
Diffstat (limited to 'v_windows/v/old/vlib/math/fractions/fraction.v')
-rw-r--r-- | v_windows/v/old/vlib/math/fractions/fraction.v | 259 |
1 files changed, 259 insertions, 0 deletions
diff --git a/v_windows/v/old/vlib/math/fractions/fraction.v b/v_windows/v/old/vlib/math/fractions/fraction.v new file mode 100644 index 0000000..2e0b7bd --- /dev/null +++ b/v_windows/v/old/vlib/math/fractions/fraction.v @@ -0,0 +1,259 @@ +// Copyright (c) 2019-2021 Alexander Medvednikov. All rights reserved. +// Use of this source code is governed by an MIT license +// that can be found in the LICENSE file. +module fractions + +import math +import math.bits + +// Fraction Struct +// --------------- +// A Fraction has a numerator (n) and a denominator (d). If the user uses +// the helper functions in this module, then the following are guaranteed: +// 1. If the user provides n and d with gcd(n, d) > 1, the fraction will +// not be reduced automatically. +// 2. d cannot be set to zero. The factory function will panic. +// 3. If provided d is negative, it will be made positive. n will change as well. +struct Fraction { + n i64 + d i64 +pub: + is_reduced bool +} + +// A factory function for creating a Fraction, adds a boundary condition +// to ensure that the denominator is non-zero. It automatically converts +// the negative denominator to positive and adjusts the numerator. +// NOTE: Fractions created are not reduced by default. +pub fn fraction(n i64, d i64) Fraction { + if d == 0 { + panic('Denominator cannot be zero') + } + // The denominator is always guaranteed to be positive (and non-zero). + if d < 0 { + return fraction(-n, -d) + } + return Fraction{ + n: n + d: d + is_reduced: math.gcd(n, d) == 1 + } +} + +// To String method +pub fn (f Fraction) str() string { + return '$f.n/$f.d' +} + +// +// + ---------------------+ +// | Arithmetic functions.| +// + ---------------------+ +// +// These are implemented from Knuth, TAOCP Vol 2. Section 4.5 +// +// Returns a correctly reduced result for both addition and subtraction +// NOTE: requires reduced inputs +fn general_addition_result(f1 Fraction, f2 Fraction, addition bool) Fraction { + d1 := math.gcd(f1.d, f2.d) + // d1 happens to be 1 around 600/(pi)^2 or 61 percent of the time (Theorem 4.5.2D) + if d1 == 1 { + num1n2d := f1.n * f2.d + num1d2n := f1.d * f2.n + n := if addition { num1n2d + num1d2n } else { num1n2d - num1d2n } + return Fraction{ + n: n + d: f1.d * f2.d + is_reduced: true + } + } + // Here d1 > 1. + f1den := f1.d / d1 + f2den := f2.d / d1 + term1 := f1.n * f2den + term2 := f2.n * f1den + t := if addition { term1 + term2 } else { term1 - term2 } + d2 := math.gcd(t, d1) + return Fraction{ + n: t / d2 + d: f1den * (f2.d / d2) + is_reduced: true + } +} + +// Fraction add using operator overloading +pub fn (f1 Fraction) + (f2 Fraction) Fraction { + return general_addition_result(f1.reduce(), f2.reduce(), true) +} + +// Fraction subtract using operator overloading +pub fn (f1 Fraction) - (f2 Fraction) Fraction { + return general_addition_result(f1.reduce(), f2.reduce(), false) +} + +// Returns a correctly reduced result for both multiplication and division +// NOTE: requires reduced inputs +fn general_multiplication_result(f1 Fraction, f2 Fraction, multiplication bool) Fraction { + // * Theorem: If f1 and f2 are reduced i.e. gcd(f1.n, f1.d) == 1 and gcd(f2.n, f2.d) == 1, + // then gcd(f1.n * f2.n, f1.d * f2.d) == gcd(f1.n, f2.d) * gcd(f1.d, f2.n) + // * Knuth poses this an exercise for 4.5.1. - Exercise 2 + // * Also, note that: + // The terms are flipped for multiplication and division, so the gcds must be calculated carefully + // We do multiple divisions in order to prevent any possible overflows. + // * One more thing: + // if d = gcd(a, b) for example, then d divides both a and b + if multiplication { + d1 := math.gcd(f1.n, f2.d) + d2 := math.gcd(f1.d, f2.n) + return Fraction{ + n: (f1.n / d1) * (f2.n / d2) + d: (f2.d / d1) * (f1.d / d2) + is_reduced: true + } + } else { + d1 := math.gcd(f1.n, f2.n) + d2 := math.gcd(f1.d, f2.d) + return Fraction{ + n: (f1.n / d1) * (f2.d / d2) + d: (f2.n / d1) * (f1.d / d2) + is_reduced: true + } + } +} + +// Fraction multiply using operator overloading +pub fn (f1 Fraction) * (f2 Fraction) Fraction { + return general_multiplication_result(f1.reduce(), f2.reduce(), true) +} + +// Fraction divide using operator overloading +pub fn (f1 Fraction) / (f2 Fraction) Fraction { + if f2.n == 0 { + panic('Cannot divide by zero') + } + // If the second fraction is negative, it will + // mess up the sign. We need positive denominator + if f2.n < 0 { + return f1.negate() / f2.negate() + } + return general_multiplication_result(f1.reduce(), f2.reduce(), false) +} + +// Fraction negate method +pub fn (f Fraction) negate() Fraction { + return Fraction{ + n: -f.n + d: f.d + is_reduced: f.is_reduced + } +} + +// Fraction reciprocal method +pub fn (f Fraction) reciprocal() Fraction { + if f.n == 0 { + panic('Denominator cannot be zero') + } + return Fraction{ + n: f.d + d: f.n + is_reduced: f.is_reduced + } +} + +// Fraction method which reduces the fraction +pub fn (f Fraction) reduce() Fraction { + if f.is_reduced { + return f + } + cf := math.gcd(f.n, f.d) + return Fraction{ + n: f.n / cf + d: f.d / cf + is_reduced: true + } +} + +// f64 converts the Fraction to 64-bit floating point +pub fn (f Fraction) f64() f64 { + return f64(f.n) / f64(f.d) +} + +// +// + ------------------+ +// | Utility functions.| +// + ------------------+ +// +// Returns the absolute value of an i64 +fn abs(num i64) i64 { + if num < 0 { + return -num + } else { + return num + } +} + +// cmp_i64s compares the two arguments, returns 0 when equal, 1 when the first is bigger, -1 otherwise +fn cmp_i64s(a i64, b i64) int { + if a == b { + return 0 + } else if a > b { + return 1 + } else { + return -1 + } +} + +// cmp_f64s compares the two arguments, returns 0 when equal, 1 when the first is bigger, -1 otherwise +fn cmp_f64s(a f64, b f64) int { + // V uses epsilon comparison internally + if a == b { + return 0 + } else if a > b { + return 1 + } else { + return -1 + } +} + +// Two integers are safe to multiply when their bit lengths +// sum up to less than 64 (conservative estimate). +fn safe_to_multiply(a i64, b i64) bool { + return (bits.len_64(u64(abs(a))) + bits.len_64(u64(abs(b)))) < 64 +} + +// cmp compares the two arguments, returns 0 when equal, 1 when the first is bigger, -1 otherwise +fn cmp(f1 Fraction, f2 Fraction) int { + if safe_to_multiply(f1.n, f2.d) && safe_to_multiply(f2.n, f1.d) { + return cmp_i64s(f1.n * f2.d, f2.n * f1.d) + } else { + return cmp_f64s(f1.f64(), f2.f64()) + } +} + +// +-----------------------------+ +// | Public comparison functions | +// +-----------------------------+ +// equals returns true if both the Fractions are equal +pub fn (f1 Fraction) equals(f2 Fraction) bool { + return cmp(f1, f2) == 0 +} + +// ge returns true if f1 >= f2 +pub fn (f1 Fraction) ge(f2 Fraction) bool { + return cmp(f1, f2) >= 0 +} + +// gt returns true if f1 > f2 +pub fn (f1 Fraction) gt(f2 Fraction) bool { + return cmp(f1, f2) > 0 +} + +// le returns true if f1 <= f2 +pub fn (f1 Fraction) le(f2 Fraction) bool { + return cmp(f1, f2) <= 0 +} + +// lt returns true if f1 < f2 +pub fn (f1 Fraction) lt(f2 Fraction) bool { + return cmp(f1, f2) < 0 +} |