aboutsummaryrefslogtreecommitdiff
path: root/v_windows/v/old/vlib/math/math_test.v
diff options
context:
space:
mode:
Diffstat (limited to 'v_windows/v/old/vlib/math/math_test.v')
-rw-r--r--v_windows/v/old/vlib/math/math_test.v806
1 files changed, 806 insertions, 0 deletions
diff --git a/v_windows/v/old/vlib/math/math_test.v b/v_windows/v/old/vlib/math/math_test.v
new file mode 100644
index 0000000..c0cd7d8
--- /dev/null
+++ b/v_windows/v/old/vlib/math/math_test.v
@@ -0,0 +1,806 @@
+module math
+
+struct Fi {
+ f f64
+ i int
+}
+
+const (
+ vf_ = [f64(4.9790119248836735e+00), 7.7388724745781045e+00, -2.7688005719200159e-01,
+ -5.0106036182710749e+00, 9.6362937071984173e+00, 2.9263772392439646e+00,
+ 5.2290834314593066e+00, 2.7279399104360102e+00, 1.8253080916808550e+00,
+ -8.6859247685756013e+00,
+ ]
+ // The expected results below were computed by the high precision calculators
+ // at https://keisan.casio.com/. More exact input values (array vf_[], above)
+ // were obtained by printing them with "%.26f". The answers were calculated
+ // to 26 digits (by using the "Digit number" drop-down control of each
+ // calculator).
+ acos_ = [f64(1.0496193546107222142571536e+00), 6.8584012813664425171660692e-01,
+ 1.5984878714577160325521819e+00, 2.0956199361475859327461799e+00,
+ 2.7053008467824138592616927e-01, 1.2738121680361776018155625e+00,
+ 1.0205369421140629186287407e+00, 1.2945003481781246062157835e+00,
+ 1.3872364345374451433846657e+00, 2.6231510803970463967294145e+00]
+ asin_ = [f64(5.2117697218417440497416805e-01), 8.8495619865825236751471477e-01,
+ -2.769154466281941332086016e-02, -5.2482360935268931351485822e-01,
+ 1.3002662421166552333051524e+00, 2.9698415875871901741575922e-01,
+ 5.5025938468083370060258102e-01, 2.7629597861677201301553823e-01,
+ 1.83559892257451475846656e-01, -1.0523547536021497774980928e+00]
+ atan_ = [f64(1.372590262129621651920085e+00), 1.442290609645298083020664e+00,
+ -2.7011324359471758245192595e-01, -1.3738077684543379452781531e+00,
+ 1.4673921193587666049154681e+00, 1.2415173565870168649117764e+00,
+ 1.3818396865615168979966498e+00, 1.2194305844639670701091426e+00,
+ 1.0696031952318783760193244e+00, -1.4561721938838084990898679e+00]
+ atan2_ = [f64(1.1088291730037004444527075e+00), 9.1218183188715804018797795e-01,
+ 1.5984772603216203736068915e+00, 2.0352918654092086637227327e+00,
+ 8.0391819139044720267356014e-01, 1.2861075249894661588866752e+00,
+ 1.0889904479131695712182587e+00, 1.3044821793397925293797357e+00,
+ 1.3902530903455392306872261e+00, 2.2859857424479142655411058e+00]
+ ceil_ = [f64(5.0000000000000000e+00), 8.0000000000000000e+00, copysign(0, -1),
+ -5.0000000000000000e+00, 1.0000000000000000e+01, 3.0000000000000000e+00,
+ 6.0000000000000000e+00, 3.0000000000000000e+00, 2.0000000000000000e+00,
+ -8.0000000000000000e+00,
+ ]
+ cos_ = [f64(2.634752140995199110787593e-01), 1.148551260848219865642039e-01,
+ 9.6191297325640768154550453e-01, 2.938141150061714816890637e-01,
+ -9.777138189897924126294461e-01, -9.7693041344303219127199518e-01,
+ 4.940088096948647263961162e-01, -9.1565869021018925545016502e-01,
+ -2.517729313893103197176091e-01, -7.39241351595676573201918e-01]
+ // Results for 100000 * pi + vf_[i]
+ cos_large_ = [f64(2.634752141185559426744e-01), 1.14855126055543100712e-01,
+ 9.61912973266488928113e-01, 2.9381411499556122552e-01, -9.777138189880161924641e-01,
+ -9.76930413445147608049e-01, 4.940088097314976789841e-01, -9.15658690217517835002e-01,
+ -2.51772931436786954751e-01, -7.3924135157173099849e-01]
+ cosh_ = [f64(7.2668796942212842775517446e+01), 1.1479413465659254502011135e+03,
+ 1.0385767908766418550935495e+00, 7.5000957789658051428857788e+01,
+ 7.655246669605357888468613e+03, 9.3567491758321272072888257e+00,
+ 9.331351599270605471131735e+01, 7.6833430994624643209296404e+00,
+ 3.1829371625150718153881164e+00, 2.9595059261916188501640911e+03]
+ exp_ = [f64(1.4533071302642137507696589e+02), 2.2958822575694449002537581e+03,
+ 7.5814542574851666582042306e-01, 6.6668778421791005061482264e-03,
+ 1.5310493273896033740861206e+04, 1.8659907517999328638667732e+01,
+ 1.8662167355098714543942057e+02, 1.5301332413189378961665788e+01,
+ 6.2047063430646876349125085e+00, 1.6894712385826521111610438e-04]
+ exp2_ = [f64(3.1537839463286288034313104e+01), 2.1361549283756232296144849e+02,
+ 8.2537402562185562902577219e-01, 3.1021158628740294833424229e-02,
+ 7.9581744110252191462569661e+02, 7.6019905892596359262696423e+00,
+ 3.7506882048388096973183084e+01, 6.6250893439173561733216375e+00,
+ 3.5438267900243941544605339e+00, 2.4281533133513300984289196e-03]
+ fabs_ = [f64(4.9790119248836735e+00), 7.7388724745781045e+00, 2.7688005719200159e-01,
+ 5.0106036182710749e+00, 9.6362937071984173e+00, 2.9263772392439646e+00,
+ 5.2290834314593066e+00, 2.7279399104360102e+00, 1.8253080916808550e+00,
+ 8.6859247685756013e+00,
+ ]
+ floor_ = [f64(4.0000000000000000e+00), 7.0000000000000000e+00, -1.0000000000000000e+00,
+ -6.0000000000000000e+00, 9.0000000000000000e+00, 2.0000000000000000e+00,
+ 5.0000000000000000e+00, 2.0000000000000000e+00, 1.0000000000000000e+00,
+ -9.0000000000000000e+00,
+ ]
+ fmod_ = [f64(4.197615023265299782906368e-02), 2.261127525421895434476482e+00,
+ 3.231794108794261433104108e-02, 4.989396381728925078391512e+00,
+ 3.637062928015826201999516e-01, 1.220868282268106064236690e+00,
+ 4.770916568540693347699744e+00, 1.816180268691969246219742e+00,
+ 8.734595415957246977711748e-01, 1.314075231424398637614104e+00]
+ gamma_ = [f64(2.3254348370739963835386613898e+01), 2.991153837155317076427529816e+03,
+ -4.561154336726758060575129109e+00, 7.719403468842639065959210984e-01,
+ 1.6111876618855418534325755566e+05, 1.8706575145216421164173224946e+00,
+ 3.4082787447257502836734201635e+01, 1.579733951448952054898583387e+00,
+ 9.3834586598354592860187267089e-01, -2.093995902923148389186189429e-05]
+ log_ = [f64(1.605231462693062999102599e+00), 2.0462560018708770653153909e+00,
+ -1.2841708730962657801275038e+00, 1.6115563905281545116286206e+00,
+ 2.2655365644872016636317461e+00, 1.0737652208918379856272735e+00,
+ 1.6542360106073546632707956e+00, 1.0035467127723465801264487e+00,
+ 6.0174879014578057187016475e-01, 2.161703872847352815363655e+00]
+ logb_ = [f64(2.0000000000000000e+00), 2.0000000000000000e+00, -2.0000000000000000e+00,
+ 2.0000000000000000e+00, 3.0000000000000000e+00, 1.0000000000000000e+00,
+ 2.0000000000000000e+00, 1.0000000000000000e+00, 0.0000000000000000e+00,
+ 3.0000000000000000e+00,
+ ]
+ log10_ = [f64(6.9714316642508290997617083e-01), 8.886776901739320576279124e-01,
+ -5.5770832400658929815908236e-01, 6.998900476822994346229723e-01,
+ 9.8391002850684232013281033e-01, 4.6633031029295153334285302e-01,
+ 7.1842557117242328821552533e-01, 4.3583479968917773161304553e-01,
+ 2.6133617905227038228626834e-01, 9.3881606348649405716214241e-01]
+ log1p_ = [f64(4.8590257759797794104158205e-02), 7.4540265965225865330849141e-02,
+ -2.7726407903942672823234024e-03, -5.1404917651627649094953380e-02,
+ 9.1998280672258624681335010e-02, 2.8843762576593352865894824e-02,
+ 5.0969534581863707268992645e-02, 2.6913947602193238458458594e-02,
+ 1.8088493239630770262045333e-02, -9.0865245631588989681559268e-02]
+ log2_ = [f64(2.3158594707062190618898251e+00), 2.9521233862883917703341018e+00,
+ -1.8526669502700329984917062e+00, 2.3249844127278861543568029e+00,
+ 3.268478366538305087466309e+00, 1.5491157592596970278166492e+00,
+ 2.3865580889631732407886495e+00, 1.447811865817085365540347e+00,
+ 8.6813999540425116282815557e-01, 3.118679457227342224364709e+00]
+ modf_ = [[f64(4.0000000000000000e+00), 9.7901192488367350108546816e-01],
+ [f64(7.0000000000000000e+00), 7.3887247457810456552351752e-01],
+ [f64(-0.0), -2.7688005719200159404635997e-01],
+ [f64(-5.0000000000000000e+00),
+ -1.060361827107492160848778e-02,
+ ],
+ [f64(9.0000000000000000e+00), 6.3629370719841737980004837e-01],
+ [f64(2.0000000000000000e+00), 9.2637723924396464525443662e-01],
+ [f64(5.0000000000000000e+00), 2.2908343145930665230025625e-01],
+ [f64(2.0000000000000000e+00), 7.2793991043601025126008608e-01],
+ [f64(1.0000000000000000e+00), 8.2530809168085506044576505e-01],
+ [f64(-8.0000000000000000e+00), -6.8592476857560136238589621e-01],
+ ]
+ nextafter32_ = [4.979012489318848e+00, 7.738873004913330e+00, -2.768800258636475e-01,
+ -5.010602951049805e+00, 9.636294364929199e+00, 2.926377534866333e+00, 5.229084014892578e+00,
+ 2.727940082550049e+00, 1.825308203697205e+00, -8.685923576354980e+00]
+ nextafter64_ = [f64(4.97901192488367438926388786e+00), 7.73887247457810545370193722e+00,
+ -2.7688005719200153853520874e-01, -5.01060361827107403343006808e+00,
+ 9.63629370719841915615688777e+00, 2.92637723924396508934364647e+00,
+ 5.22908343145930754047867595e+00, 2.72793991043601069534929593e+00,
+ 1.82530809168085528249036997e+00, -8.68592476857559958602905681e+00]
+ pow_ = [f64(9.5282232631648411840742957e+04), 5.4811599352999901232411871e+07,
+ 5.2859121715894396531132279e-01, 9.7587991957286474464259698e-06,
+ 4.328064329346044846740467e+09, 8.4406761805034547437659092e+02,
+ 1.6946633276191194947742146e+05, 5.3449040147551939075312879e+02,
+ 6.688182138451414936380374e+01, 2.0609869004248742886827439e-09]
+ remainder_ = [f64(4.197615023265299782906368e-02), 2.261127525421895434476482e+00,
+ 3.231794108794261433104108e-02, -2.120723654214984321697556e-02,
+ 3.637062928015826201999516e-01, 1.220868282268106064236690e+00,
+ -4.581668629186133046005125e-01, -9.117596417440410050403443e-01,
+ 8.734595415957246977711748e-01, 1.314075231424398637614104e+00]
+ round_ = [f64(5), 8, -0.0, -5, 10, 3, 5, 3, 2, -9]
+ signbit_ = [false, false, true, true, false, false, false, false, false, true]
+ sin_ = [f64(-9.6466616586009283766724726e-01), 9.9338225271646545763467022e-01,
+ -2.7335587039794393342449301e-01, 9.5586257685042792878173752e-01,
+ -2.099421066779969164496634e-01, 2.135578780799860532750616e-01,
+ -8.694568971167362743327708e-01, 4.019566681155577786649878e-01,
+ 9.6778633541687993721617774e-01, -6.734405869050344734943028e-01]
+ // Results for 100000 * pi + vf_[i]
+ sin_large_ = [f64(-9.646661658548936063912e-01), 9.933822527198506903752e-01,
+ -2.7335587036246899796e-01, 9.55862576853689321268e-01, -2.099421066862688873691e-01,
+ 2.13557878070308981163e-01, -8.694568970959221300497e-01, 4.01956668098863248917e-01,
+ 9.67786335404528727927e-01, -6.7344058693131973066e-01]
+ sinh_ = [f64(7.2661916084208532301448439e+01), 1.1479409110035194500526446e+03,
+ -2.8043136512812518927312641e-01, -7.499429091181587232835164e+01,
+ 7.6552466042906758523925934e+03, 9.3031583421672014313789064e+00,
+ 9.330815755828109072810322e+01, 7.6179893137269146407361477e+00,
+ 3.021769180549615819524392e+00, -2.95950575724449499189888e+03]
+ sqrt_ = [f64(2.2313699659365484748756904e+00), 2.7818829009464263511285458e+00,
+ 5.2619393496314796848143251e-01, 2.2384377628763938724244104e+00,
+ 3.1042380236055381099288487e+00, 1.7106657298385224403917771e+00,
+ 2.286718922705479046148059e+00, 1.6516476350711159636222979e+00,
+ 1.3510396336454586262419247e+00, 2.9471892997524949215723329e+00]
+ tan_ = [f64(-3.661316565040227801781974e+00), 8.64900232648597589369854e+00,
+ -2.8417941955033612725238097e-01, 3.253290185974728640827156e+00,
+ 2.147275640380293804770778e-01, -2.18600910711067004921551e-01,
+ -1.760002817872367935518928e+00, -4.389808914752818126249079e-01,
+ -3.843885560201130679995041e+00, 9.10988793377685105753416e-01]
+ // Results for 100000 * pi + vf_[i]
+ tan_large_ = [f64(-3.66131656475596512705e+00), 8.6490023287202547927e+00,
+ -2.841794195104782406e-01, 3.2532901861033120983e+00, 2.14727564046880001365e-01,
+ -2.18600910700688062874e-01, -1.760002817699722747043e+00, -4.38980891453536115952e-01,
+ -3.84388555942723509071e+00, 9.1098879344275101051e-01]
+ tanh_ = [f64(9.9990531206936338549262119e-01), 9.9999962057085294197613294e-01,
+ -2.7001505097318677233756845e-01, -9.9991110943061718603541401e-01,
+ 9.9999999146798465745022007e-01, 9.9427249436125236705001048e-01,
+ 9.9994257600983138572705076e-01, 9.9149409509772875982054701e-01,
+ 9.4936501296239685514466577e-01, -9.9999994291374030946055701e-01]
+ trunc_ = [f64(4.0000000000000000e+00), 7.0000000000000000e+00, copysign(0, -1),
+ -5.0000000000000000e+00, 9.0000000000000000e+00, 2.0000000000000000e+00,
+ 5.0000000000000000e+00, 2.0000000000000000e+00, 1.0000000000000000e+00,
+ -8.0000000000000000e+00,
+ ]
+)
+
+fn tolerance(a f64, b f64, tol f64) bool {
+ mut ee := tol
+ // Multiplying by ee here can underflow denormal values to zero.
+ // Check a==b so that at least if a and b are small and identical
+ // we say they match.
+ if a == b {
+ return true
+ }
+ mut d := a - b
+ if d < 0 {
+ d = -d
+ }
+ // note: b is correct (expected) value, a is actual value.
+ // make error tolerance a fraction of b, not a.
+ if b != 0 {
+ ee = ee * b
+ if ee < 0 {
+ ee = -ee
+ }
+ }
+ return d < ee
+}
+
+fn close(a f64, b f64) bool {
+ return tolerance(a, b, 1e-14)
+}
+
+fn veryclose(a f64, b f64) bool {
+ return tolerance(a, b, 4e-16)
+}
+
+fn soclose(a f64, b f64, e f64) bool {
+ return tolerance(a, b, e)
+}
+
+fn alike(a f64, b f64) bool {
+ if is_nan(a) && is_nan(b) {
+ return true
+ } else if a == b {
+ return signbit(a) == signbit(b)
+ }
+ return false
+}
+
+fn test_nan() {
+ nan_f64 := nan()
+ assert nan_f64 != nan_f64
+ nan_f32 := f32(nan_f64)
+ assert nan_f32 != nan_f32
+}
+
+fn test_acos() {
+ for i := 0; i < math.vf_.len; i++ {
+ a := math.vf_[i] / 10
+ f := acos(a)
+ assert soclose(math.acos_[i], f, 1e-7)
+ }
+ vfacos_sc_ := [-pi, 1, pi, nan()]
+ acos_sc_ := [nan(), 0, nan(), nan()]
+ for i := 0; i < vfacos_sc_.len; i++ {
+ f := acos(vfacos_sc_[i])
+ assert alike(acos_sc_[i], f)
+ }
+}
+
+fn test_asin() {
+ for i := 0; i < math.vf_.len; i++ {
+ a := math.vf_[i] / 10
+ f := asin(a)
+ assert veryclose(math.asin_[i], f)
+ }
+ vfasin_sc_ := [-pi, copysign(0, -1), 0, pi, nan()]
+ asin_sc_ := [nan(), copysign(0, -1), 0, nan(), nan()]
+ for i := 0; i < vfasin_sc_.len; i++ {
+ f := asin(vfasin_sc_[i])
+ assert alike(asin_sc_[i], f)
+ }
+}
+
+fn test_atan() {
+ for i := 0; i < math.vf_.len; i++ {
+ f := atan(math.vf_[i])
+ assert veryclose(math.atan_[i], f)
+ }
+ vfatan_sc_ := [inf(-1), copysign(0, -1), 0, inf(1), nan()]
+ atan_sc_ := [f64(-pi / 2), copysign(0, -1), 0, pi / 2, nan()]
+ for i := 0; i < vfatan_sc_.len; i++ {
+ f := atan(vfatan_sc_[i])
+ assert alike(atan_sc_[i], f)
+ }
+}
+
+fn test_atan2() {
+ for i := 0; i < math.vf_.len; i++ {
+ f := atan2(10, math.vf_[i])
+ assert veryclose(math.atan2_[i], f)
+ }
+ vfatan2_sc_ := [[inf(-1), inf(-1)], [inf(-1), -pi], [inf(-1), 0],
+ [inf(-1), pi], [inf(-1), inf(1)], [inf(-1), nan()], [-pi, inf(-1)],
+ [-pi, 0], [-pi, inf(1)], [-pi, nan()], [f64(-0.0), inf(-1)],
+ [f64(-0.0), -pi], [f64(-0.0), -0.0], [f64(-0.0), 0], [f64(-0.0), pi],
+ [f64(-0.0), inf(1)], [f64(-0.0), nan()], [f64(0), inf(-1)],
+ [f64(0), -pi], [f64(0), -0.0], [f64(0), 0], [f64(0), pi],
+ [f64(0), inf(1)], [f64(0), nan()], [pi, inf(-1)], [pi, 0],
+ [pi, inf(1)], [pi, nan()], [inf(1), inf(-1)], [inf(1), -pi],
+ [inf(1), 0], [inf(1), pi], [inf(1), inf(1)], [inf(1), nan()],
+ [nan(), nan()],
+ ]
+ atan2_sc_ := [f64(-3.0) * pi / 4.0, /* atan2(-inf, -inf) */ -pi / 2, /* atan2(-inf, -pi) */
+ -pi / 2,
+ /* atan2(-inf, +0) */ -pi / 2, /* atan2(-inf, pi) */ -pi / 4, /* atan2(-inf, +inf) */
+ nan(), /* atan2(-inf, nan) */ -pi, /* atan2(-pi, -inf) */ -pi / 2, /* atan2(-pi, +0) */
+ -0.0,
+ /* atan2(-pi, inf) */ nan(), /* atan2(-pi, nan) */ -pi, /* atan2(-0, -inf) */ -pi,
+ /* atan2(-0, -pi) */ -pi, /* atan2(-0, -0) */ -0.0, /* atan2(-0, +0) */ -0.0, /* atan2(-0, pi) */
+ -0.0,
+ /* atan2(-0, +inf) */ nan(), /* atan2(-0, nan) */ pi, /* atan2(+0, -inf) */ pi, /* atan2(+0, -pi) */
+ pi, /* atan2(+0, -0) */ 0, /* atan2(+0, +0) */ 0, /* atan2(+0, pi) */ 0, /* atan2(+0, +inf) */
+ nan(), /* atan2(+0, nan) */ pi, /* atan2(pi, -inf) */ pi / 2, /* atan2(pi, +0) */ 0,
+ /* atan2(pi, +inf) */ nan(), /* atan2(pi, nan) */ 3.0 * pi / 4, /* atan2(+inf, -inf) */
+ pi / 2, /* atan2(+inf, -pi) */ pi / 2, /* atan2(+inf, +0) */ pi / 2, /* atan2(+inf, pi) */
+ pi / 4, /* atan2(+inf, +inf) */ nan(), /* atan2(+inf, nan) */
+ nan(), /* atan2(nan, nan) */
+ ]
+ for i := 0; i < vfatan2_sc_.len; i++ {
+ f := atan2(vfatan2_sc_[i][0], vfatan2_sc_[i][1])
+ assert alike(atan2_sc_[i], f)
+ }
+}
+
+fn test_ceil() {
+ // for i := 0; i < vf_.len; i++ {
+ // f := ceil(vf_[i])
+ // assert alike(ceil_[i], f)
+ // }
+ vfceil_sc_ := [inf(-1), copysign(0, -1), 0, inf(1), nan()]
+ ceil_sc_ := [inf(-1), copysign(0, -1), 0, inf(1), nan()]
+ for i := 0; i < vfceil_sc_.len; i++ {
+ f := ceil(vfceil_sc_[i])
+ assert alike(ceil_sc_[i], f)
+ }
+}
+
+fn test_cos() {
+ for i := 0; i < math.vf_.len; i++ {
+ f := cos(math.vf_[i])
+ assert veryclose(math.cos_[i], f)
+ }
+ vfcos_sc_ := [inf(-1), inf(1), nan()]
+ cos_sc_ := [nan(), nan(), nan()]
+ for i := 0; i < vfcos_sc_.len; i++ {
+ f := cos(vfcos_sc_[i])
+ assert alike(cos_sc_[i], f)
+ }
+}
+
+fn test_cosh() {
+ for i := 0; i < math.vf_.len; i++ {
+ f := cosh(math.vf_[i])
+ assert close(math.cosh_[i], f)
+ }
+ vfcosh_sc_ := [inf(-1), copysign(0, -1), 0, inf(1), nan()]
+ cosh_sc_ := [inf(1), 1, 1, inf(1), nan()]
+ for i := 0; i < vfcosh_sc_.len; i++ {
+ f := cosh(vfcosh_sc_[i])
+ assert alike(cosh_sc_[i], f)
+ }
+}
+
+fn test_abs() {
+ for i := 0; i < math.vf_.len; i++ {
+ f := abs(math.vf_[i])
+ assert math.fabs_[i] == f
+ }
+}
+
+fn test_floor() {
+ for i := 0; i < math.vf_.len; i++ {
+ f := floor(math.vf_[i])
+ assert alike(math.floor_[i], f)
+ }
+ vfceil_sc_ := [inf(-1), copysign(0, -1), 0, inf(1), nan()]
+ ceil_sc_ := [inf(-1), copysign(0, -1), 0, inf(1), nan()]
+ for i := 0; i < vfceil_sc_.len; i++ {
+ f := floor(vfceil_sc_[i])
+ assert alike(ceil_sc_[i], f)
+ }
+}
+
+fn test_max() {
+ for i := 0; i < math.vf_.len; i++ {
+ f := max(math.vf_[i], math.ceil_[i])
+ assert math.ceil_[i] == f
+ }
+}
+
+fn test_min() {
+ for i := 0; i < math.vf_.len; i++ {
+ f := min(math.vf_[i], math.floor_[i])
+ assert math.floor_[i] == f
+ }
+}
+
+fn test_signi() {
+ assert signi(inf(-1)) == -1
+ assert signi(-72234878292.4586129) == -1
+ assert signi(-10) == -1
+ assert signi(-pi) == -1
+ assert signi(-1) == -1
+ assert signi(-0.000000000001) == -1
+ assert signi(-0.000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001) == -1
+ assert signi(-0.0) == -1
+ //
+ assert signi(inf(1)) == 1
+ assert signi(72234878292.4586129) == 1
+ assert signi(10) == 1
+ assert signi(pi) == 1
+ assert signi(1) == 1
+ assert signi(0.000000000001) == 1
+ assert signi(0.000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001) == 1
+ assert signi(0.0) == 1
+ assert signi(nan()) == 1
+}
+
+fn test_sign() {
+ assert sign(inf(-1)) == -1.0
+ assert sign(-72234878292.4586129) == -1.0
+ assert sign(-10) == -1.0
+ assert sign(-pi) == -1.0
+ assert sign(-1) == -1.0
+ assert sign(-0.000000000001) == -1.0
+ assert sign(-0.000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001) == -1.0
+ assert sign(-0.0) == -1.0
+ //
+ assert sign(inf(1)) == 1.0
+ assert sign(72234878292.4586129) == 1
+ assert sign(10) == 1.0
+ assert sign(pi) == 1.0
+ assert sign(1) == 1.0
+ assert sign(0.000000000001) == 1.0
+ assert sign(0.000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001) == 1.0
+ assert sign(0.0) == 1.0
+ assert is_nan(sign(nan()))
+ assert is_nan(sign(-nan()))
+}
+
+fn test_exp() {
+ for i := 0; i < math.vf_.len; i++ {
+ f := exp(math.vf_[i])
+ assert veryclose(math.exp_[i], f)
+ }
+ vfexp_sc_ := [inf(-1), -2000, 2000, inf(1), nan(), /* smallest f64 that overflows Exp(x) */
+ 7.097827128933841e+02, 1.48852223e+09, 1.4885222e+09, 1, /* near zero */
+ 3.725290298461915e-09,
+ /* denormal */ -740]
+ exp_sc_ := [f64(0), 0, inf(1), inf(1), nan(), inf(1), inf(1),
+ inf(1), 2.718281828459045, 1.0000000037252903, 4.2e-322]
+ for i := 0; i < vfexp_sc_.len; i++ {
+ f := exp(vfexp_sc_[i])
+ assert alike(exp_sc_[i], f)
+ }
+}
+
+fn test_exp2() {
+ for i := 0; i < math.vf_.len; i++ {
+ f := exp2(math.vf_[i])
+ assert soclose(math.exp2_[i], f, 1e-9)
+ }
+ vfexp2_sc_ := [f64(-2000), 2000, inf(1), nan(), /* smallest f64 that overflows Exp2(x) */
+ 1024, /* near underflow */ -1.07399999999999e+03, /* near zero */ 3.725290298461915e-09]
+ exp2_sc_ := [f64(0), inf(1), inf(1), nan(), inf(1), 5e-324, 1.0000000025821745]
+ for i := 0; i < vfexp2_sc_.len; i++ {
+ f := exp2(vfexp2_sc_[i])
+ assert alike(exp2_sc_[i], f)
+ }
+}
+
+fn test_gamma() {
+ vfgamma_ := [[inf(1), inf(1)], [inf(-1), nan()], [f64(0), inf(1)],
+ [f64(-0.0), inf(-1)], [nan(), nan()], [f64(-1), nan()],
+ [f64(-2), nan()], [f64(-3), nan()], [f64(-1e+16), nan()],
+ [f64(-1e+300), nan()], [f64(1.7e+308), inf(1)], /* Test inputs inspi_red by Python test suite. */
+ // Outputs computed at high precision by PARI/GP.
+ // If recomputing table entries), be careful to use
+ // high-precision (%.1000g) formatting of the f64 inputs.
+ // For example), -2.0000000000000004 is the f64 with exact value
+ //-2.00000000000000044408920985626161695), and
+ // gamma(-2.0000000000000004) = -1249999999999999.5386078562728167651513), while
+ // gamma(-2.00000000000000044408920985626161695) = -1125899906826907.2044875028130093136826.
+ // Thus the table lists -1.1258999068426235e+15 as the answer.
+ [f64(0.5), 1.772453850905516], [f64(1.5), 0.886226925452758],
+ [f64(2.5), 1.329340388179137], [f64(3.5), 3.3233509704478426],
+ [f64(-0.5), -3.544907701811032], [f64(-1.5), 2.363271801207355],
+ [f64(-2.5), -0.9453087204829419], [f64(-3.5), 0.2700882058522691],
+ [f64(0.1), 9.51350769866873], [f64(0.01), 99.4325851191506],
+ [f64(1e-08), 9.999999942278434e+07], [f64(1e-16), 1e+16],
+ [f64(0.001), 999.4237724845955], [f64(1e-16), 1e+16],
+ [f64(1e-308), 1e+308], [f64(5.6e-309), 1.7857142857142864e+308],
+ [f64(5.5e-309), inf(1)], [f64(1e-309), inf(1)], [f64(1e-323), inf(1)],
+ [f64(5e-324), inf(1)], [f64(-0.1), -10.686287021193193],
+ [f64(-0.01), -100.58719796441078], [f64(-1e-08), -1.0000000057721567e+08],
+ [f64(-1e-16), -1e+16], [f64(-0.001), -1000.5782056293586],
+ [f64(-1e-16), -1e+16], [f64(-1e-308), -1e+308], [f64(-5.6e-309), -1.7857142857142864e+308],
+ [f64(-5.5e-309), inf(-1)], [f64(-1e-309), inf(-1)], [f64(-1e-323), inf(-1)],
+ [f64(-5e-324), inf(-1)], [f64(-0.9999999999999999), -9.007199254740992e+15],
+ [f64(-1.0000000000000002), 4.5035996273704955e+15],
+ [f64(-1.9999999999999998),
+ 2.2517998136852485e+15,
+ ],
+ [f64(-2.0000000000000004), -1.1258999068426235e+15],
+ [f64(-100.00000000000001),
+ -7.540083334883109e-145,
+ ],
+ [f64(-99.99999999999999), 7.540083334884096e-145], [f64(17), 2.0922789888e+13],
+ [f64(171), 7.257415615307999e+306], [f64(171.6), 1.5858969096672565e+308],
+ [f64(171.624), 1.7942117599248104e+308], [f64(171.625), inf(1)],
+ [f64(172), inf(1)], [f64(2000), inf(1)], [f64(-100.5), -3.3536908198076787e-159],
+ [f64(-160.5), -5.255546447007829e-286], [f64(-170.5), -3.3127395215386074e-308],
+ [f64(-171.5), 1.9316265431712e-310], [f64(-176.5), -1.196e-321],
+ [f64(-177.5), 5e-324], [f64(-178.5), -0.0], [f64(-179.5), 0],
+ [f64(-201.0001), 0], [f64(-202.9999), -0.0], [f64(-1000.5), -0.0],
+ [f64(-1.0000000003e+09), -0.0], [f64(-4.5035996273704955e+15), 0],
+ [f64(-63.349078729022985), 4.177797167776188e-88],
+ [f64(-127.45117632943295),
+ 1.183111089623681e-214,
+ ],
+ ]
+ _ := vfgamma_[0][0]
+ // for i := 0; i < math.vf_.len; i++ {
+ // f := gamma(math.vf_[i])
+ // assert veryclose(math.gamma_[i], f)
+ // }
+ // for _, g in vfgamma_ {
+ // f := gamma(g[0])
+ // if is_nan(g[1]) || is_inf(g[1], 0) || g[1] == 0 || f == 0 {
+ // assert alike(g[1], f)
+ // } else if g[0] > -50 && g[0] <= 171 {
+ // assert veryclose(g[1], f)
+ // } else {
+ // assert soclose(g[1], f, 1e-9)
+ // }
+ // }
+}
+
+fn test_hypot() {
+ for i := 0; i < math.vf_.len; i++ {
+ a := abs(1e+200 * math.tanh_[i] * sqrt(2.0))
+ f := hypot(1e+200 * math.tanh_[i], 1e+200 * math.tanh_[i])
+ assert veryclose(a, f)
+ }
+ vfhypot_sc_ := [[inf(-1), inf(-1)], [inf(-1), 0], [inf(-1),
+ inf(1),
+ ],
+ [inf(-1), nan()], [f64(-0.0), -0.0], [f64(-0.0), 0], [f64(0), -0.0],
+ [f64(0), 0], /* +0,0 */ [f64(0), inf(-1)], [f64(0), inf(1)],
+ [f64(0), nan()], [inf(1), inf(-1)], [inf(1), 0], [inf(1),
+ inf(1),
+ ],
+ [inf(1), nan()], [nan(), inf(-1)], [nan(), 0], [nan(),
+ inf(1),
+ ],
+ [nan(), nan()],
+ ]
+ hypot_sc_ := [inf(1), inf(1), inf(1), inf(1), 0, 0, 0, 0, inf(1),
+ inf(1), nan(), inf(1), inf(1), inf(1), inf(1), inf(1),
+ nan(), inf(1), nan()]
+ for i := 0; i < vfhypot_sc_.len; i++ {
+ f := hypot(vfhypot_sc_[i][0], vfhypot_sc_[i][1])
+ assert alike(hypot_sc_[i], f)
+ }
+}
+
+fn test_log() {
+ for i := 0; i < math.vf_.len; i++ {
+ a := abs(math.vf_[i])
+ f := log(a)
+ assert math.log_[i] == f
+ }
+ vflog_sc_ := [inf(-1), -pi, copysign(0, -1), 0, 1, inf(1),
+ nan(),
+ ]
+ log_sc_ := [nan(), nan(), inf(-1), inf(-1), 0, inf(1), nan()]
+ f := log(10)
+ assert f == ln10
+ for i := 0; i < vflog_sc_.len; i++ {
+ g := log(vflog_sc_[i])
+ assert alike(log_sc_[i], g)
+ }
+}
+
+fn test_log10() {
+ for i := 0; i < math.vf_.len; i++ {
+ a := abs(math.vf_[i])
+ f := log10(a)
+ assert veryclose(math.log10_[i], f)
+ }
+ vflog_sc_ := [inf(-1), -pi, copysign(0, -1), 0, 1, inf(1),
+ nan(),
+ ]
+ log_sc_ := [nan(), nan(), inf(-1), inf(-1), 0, inf(1), nan()]
+ for i := 0; i < vflog_sc_.len; i++ {
+ f := log10(vflog_sc_[i])
+ assert alike(log_sc_[i], f)
+ }
+}
+
+fn test_pow() {
+ for i := 0; i < math.vf_.len; i++ {
+ f := pow(10, math.vf_[i])
+ assert close(math.pow_[i], f)
+ }
+ vfpow_sc_ := [[inf(-1), -pi], [inf(-1), -3], [inf(-1), -0.0],
+ [inf(-1), 0], [inf(-1), 1], [inf(-1), 3], [inf(-1), pi],
+ [inf(-1), 0.5], [inf(-1), nan()], [-pi, inf(-1)], [-pi, -pi],
+ [-pi, -0.0], [-pi, 0], [-pi, 1], [-pi, pi], [-pi, inf(1)],
+ [-pi, nan()], [f64(-1), inf(-1)], [f64(-1), inf(1)], [f64(-1), nan()],
+ [f64(-1 / 2), inf(-1)], [f64(-1 / 2), inf(1)], [f64(-0.0), inf(-1)],
+ [f64(-0.0), -pi], [f64(-0.0), -0.5], [f64(-0.0), -3],
+ [f64(-0.0), 3], [f64(-0.0), pi], [f64(-0.0), 0.5], [f64(-0.0), inf(1)],
+ [f64(0), inf(-1)], [f64(0), -pi], [f64(0), -3], [f64(0), -0.0],
+ [f64(0), 0], [f64(0), 3], [f64(0), pi], [f64(0), inf(1)],
+ [f64(0), nan()], [f64(1 / 2), inf(-1)], [f64(1 / 2), inf(1)],
+ [f64(1), inf(-1)], [f64(1), inf(1)], [f64(1), nan()],
+ [pi, inf(-1)], [pi, -0.0], [pi, 0], [pi, 1], [pi, inf(1)],
+ [pi, nan()], [inf(1), -pi], [inf(1), -0.0], [inf(1), 0],
+ [inf(1), 1], [inf(1), pi], [inf(1), nan()], [nan(), -pi],
+ [nan(), -0.0], [nan(), 0], [nan(), 1], [nan(), pi], [nan(),
+ nan(),
+ ]]
+ pow_sc_ := [f64(0), /* pow(-inf, -pi) */ -0.0, /* pow(-inf, -3) */ 1, /* pow(-inf, -0) */ 1, /* pow(-inf, +0) */
+ inf(-1), /* pow(-inf, 1) */ inf(-1), /* pow(-inf, 3) */
+ inf(1), /* pow(-inf, pi) */ inf(1), /* pow(-inf, 0.5) */
+ nan(), /* pow(-inf, nan) */ 0, /* pow(-pi, -inf) */ nan(), /* pow(-pi, -pi) */
+ 1, /* pow(-pi, -0) */ 1, /* pow(-pi, +0) */ -pi, /* pow(-pi, 1) */ nan(), /* pow(-pi, pi) */
+ inf(1), /* pow(-pi, +inf) */ nan(), /* pow(-pi, nan) */ 1, /* pow(-1, -inf) IEEE 754-2008 */
+ 1, /* pow(-1, +inf) IEEE 754-2008 */ nan(), /* pow(-1, nan) */
+ inf(1), /* pow(-1/2, -inf) */ 0, /* pow(-1/2, +inf) */ inf(1), /* pow(-0, -inf) */
+ inf(1), /* pow(-0, -pi) */ inf(1), /* pow(-0, -0.5) */
+ inf(-1), /* pow(-0, -3) IEEE 754-2008 */ -0.0, /* pow(-0, 3) IEEE 754-2008 */ 0, /* pow(-0, pi) */
+ 0, /* pow(-0, 0.5) */ 0, /* pow(-0, +inf) */ inf(1), /* pow(+0, -inf) */
+ inf(1), /* pow(+0, -pi) */ inf(1), /* pow(+0, -3) */ 1, /* pow(+0, -0) */ 1, /* pow(+0, +0) */
+ 0, /* pow(+0, 3) */ 0,
+ /* pow(+0, pi) */ 0, /* pow(+0, +inf) */ nan(), /* pow(+0, nan) */
+ inf(1), /* pow(1/2, -inf) */ 0, /* pow(1/2, +inf) */ 1, /* pow(1, -inf) IEEE 754-2008 */
+ 1, /* pow(1, +inf) IEEE 754-2008 */ 1, /* pow(1, nan) IEEE 754-2008 */ 0, /* pow(pi, -inf) */
+ 1, /* pow(pi, -0) */ 1, /* pow(pi, +0) */ pi, /* pow(pi, 1) */ inf(1), /* pow(pi, +inf) */
+ nan(), /* pow(pi, nan) */ 0, /* pow(+inf, -pi) */ 1, /* pow(+inf, -0) */ 1, /* pow(+inf, +0) */
+ inf(1), /* pow(+inf, 1) */ inf(1), /* pow(+inf, pi) */
+ nan(), /* pow(+inf, nan) */ nan(), /* pow(nan, -pi) */ 1, /* pow(nan, -0) */ 1, /* pow(nan, +0) */
+ nan(), /* pow(nan, 1) */ nan(), /* pow(nan, pi) */ nan(), /* pow(nan, nan) */]
+ for i := 0; i < vfpow_sc_.len; i++ {
+ f := pow(vfpow_sc_[i][0], vfpow_sc_[i][1])
+ assert alike(pow_sc_[i], f)
+ }
+}
+
+fn test_round() {
+ for i := 0; i < math.vf_.len; i++ {
+ f := round(math.vf_[i])
+ assert alike(math.round_[i], f)
+ }
+ vfround_sc_ := [[f64(0), 0], [nan(), nan()], [inf(1), inf(1)]]
+ vfround_even_sc_ := [[f64(0), 0], [f64(1.390671161567e-309), 0], /* denormal */
+ [f64(0.49999999999999994), 0], /* 0.5-epsilon */ [f64(0.5), 0],
+ [f64(0.5000000000000001), 1], /* 0.5+epsilon */ [f64(-1.5), -2],
+ [f64(-2.5), -2], [nan(), nan()], [inf(1), inf(1)],
+ [f64(2251799813685249.5), 2251799813685250],
+ /* 1 bit fractian */ [f64(2251799813685250.5), 2251799813685250],
+ [f64(4503599627370495.5), 4503599627370496], /* 1 bit fraction, rounding to 0 bit fractian */
+ [f64(4503599627370497), 4503599627370497], /* large integer */
+ ]
+ _ := vfround_even_sc_[0][0]
+ for i := 0; i < vfround_sc_.len; i++ {
+ f := round(vfround_sc_[i][0])
+ assert alike(vfround_sc_[i][1], f)
+ }
+}
+
+fn test_sin() {
+ for i := 0; i < math.vf_.len; i++ {
+ f := sin(math.vf_[i])
+ assert veryclose(math.sin_[i], f)
+ }
+ vfsin_sc_ := [inf(-1), copysign(0, -1), 0, inf(1), nan()]
+ sin_sc_ := [nan(), copysign(0, -1), 0, nan(), nan()]
+ for i := 0; i < vfsin_sc_.len; i++ {
+ f := sin(vfsin_sc_[i])
+ assert alike(sin_sc_[i], f)
+ }
+}
+
+fn test_sinh() {
+ for i := 0; i < math.vf_.len; i++ {
+ f := sinh(math.vf_[i])
+ assert close(math.sinh_[i], f)
+ }
+ vfsinh_sc_ := [inf(-1), copysign(0, -1), 0, inf(1), nan()]
+ sinh_sc_ := [inf(-1), copysign(0, -1), 0, inf(1), nan()]
+ for i := 0; i < vfsinh_sc_.len; i++ {
+ f := sinh(vfsinh_sc_[i])
+ assert alike(sinh_sc_[i], f)
+ }
+}
+
+fn test_sqrt() {
+ for i := 0; i < math.vf_.len; i++ {
+ mut a := abs(math.vf_[i])
+ mut f := sqrt(a)
+ assert veryclose(math.sqrt_[i], f)
+ a = abs(math.vf_[i])
+ f = sqrt(a)
+ assert veryclose(math.sqrt_[i], f)
+ }
+ vfsqrt_sc_ := [inf(-1), -pi, copysign(0, -1), 0, inf(1), nan()]
+ sqrt_sc_ := [nan(), nan(), copysign(0, -1), 0, inf(1), nan()]
+ for i := 0; i < vfsqrt_sc_.len; i++ {
+ mut f := sqrt(vfsqrt_sc_[i])
+ assert alike(sqrt_sc_[i], f)
+ f = sqrt(vfsqrt_sc_[i])
+ assert alike(sqrt_sc_[i], f)
+ }
+}
+
+fn test_tan() {
+ for i := 0; i < math.vf_.len; i++ {
+ f := tan(math.vf_[i])
+ assert veryclose(math.tan_[i], f)
+ }
+ vfsin_sc_ := [inf(-1), copysign(0, -1), 0, inf(1), nan()]
+ sin_sc_ := [nan(), copysign(0, -1), 0, nan(), nan()]
+ // same special cases as sin
+ for i := 0; i < vfsin_sc_.len; i++ {
+ f := tan(vfsin_sc_[i])
+ assert alike(sin_sc_[i], f)
+ }
+}
+
+fn test_tanh() {
+ for i := 0; i < math.vf_.len; i++ {
+ f := tanh(math.vf_[i])
+ assert veryclose(math.tanh_[i], f)
+ }
+ vftanh_sc_ := [inf(-1), copysign(0, -1), 0, inf(1), nan()]
+ tanh_sc_ := [f64(-1), copysign(0, -1), 0, 1, nan()]
+ for i := 0; i < vftanh_sc_.len; i++ {
+ f := tanh(vftanh_sc_[i])
+ assert alike(tanh_sc_[i], f)
+ }
+}
+
+fn test_trunc() {
+ // for i := 0; i < vf_.len; i++ {
+ // f := trunc(vf_[i])
+ // assert alike(trunc_[i], f)
+ // }
+ vfceil_sc_ := [inf(-1), copysign(0, -1), 0, inf(1), nan()]
+ ceil_sc_ := [inf(-1), copysign(0, -1), 0, inf(1), nan()]
+ for i := 0; i < vfceil_sc_.len; i++ {
+ f := trunc(vfceil_sc_[i])
+ assert alike(ceil_sc_[i], f)
+ }
+}
+
+fn test_gcd() {
+ assert gcd(6, 9) == 3
+ assert gcd(6, -9) == 3
+ assert gcd(-6, -9) == 3
+ assert gcd(0, 0) == 0
+}
+
+fn test_lcm() {
+ assert lcm(2, 3) == 6
+ assert lcm(-2, 3) == 6
+ assert lcm(-2, -3) == 6
+ assert lcm(0, 0) == 0
+}
+
+fn test_digits() {
+ digits_in_10th_base := digits(125, 10)
+ assert digits_in_10th_base[0] == 5
+ assert digits_in_10th_base[1] == 2
+ assert digits_in_10th_base[2] == 1
+ digits_in_16th_base := digits(15, 16)
+ assert digits_in_16th_base[0] == 15
+ negative_digits := digits(-4, 2)
+ assert negative_digits[2] == -1
+}
+
+// Check that math functions of high angle values
+// return accurate results. [since (vf_[i] + large) - large != vf_[i],
+// testing for Trig(vf_[i] + large) == Trig(vf_[i]), where large is
+// a multiple of 2 * pi, is misleading.]
+fn test_large_cos() {
+ large := 100000.0 * pi
+ for i := 0; i < math.vf_.len; i++ {
+ f1 := math.cos_large_[i]
+ f2 := cos(math.vf_[i] + large)
+ assert soclose(f1, f2, 4e-9)
+ }
+}
+
+fn test_large_sin() {
+ large := 100000.0 * pi
+ for i := 0; i < math.vf_.len; i++ {
+ f1 := math.sin_large_[i]
+ f2 := sin(math.vf_[i] + large)
+ assert soclose(f1, f2, 4e-9)
+ }
+}
+
+fn test_large_tan() {
+ large := 100000.0 * pi
+ for i := 0; i < math.vf_.len; i++ {
+ f1 := math.tan_large_[i]
+ f2 := tan(math.vf_[i] + large)
+ assert soclose(f1, f2, 4e-9)
+ }
+}