aboutsummaryrefslogtreecommitdiff
path: root/v_windows/v/old/vlib/rand/rand.v
diff options
context:
space:
mode:
Diffstat (limited to 'v_windows/v/old/vlib/rand/rand.v')
-rw-r--r--v_windows/v/old/vlib/rand/rand.v317
1 files changed, 317 insertions, 0 deletions
diff --git a/v_windows/v/old/vlib/rand/rand.v b/v_windows/v/old/vlib/rand/rand.v
new file mode 100644
index 0000000..0136ec1
--- /dev/null
+++ b/v_windows/v/old/vlib/rand/rand.v
@@ -0,0 +1,317 @@
+// Copyright (c) 2019-2021 Alexander Medvednikov. All rights reserved.
+// Use of this source code is governed by an MIT license
+// that can be found in the LICENSE file.
+module rand
+
+import rand.seed
+import rand.wyrand
+import time
+
+// PRNGConfigStruct is a configuration struct for creating a new instance of the default RNG.
+// Note that the RNGs may have a different number of u32s required for seeding. The default
+// generator WyRand used 64 bits, ie. 2 u32s so that is the default. In case your desired generator
+// uses a different number of u32s, use the `seed.time_seed_array()` method with the correct
+// number of u32s.
+pub struct PRNGConfigStruct {
+ seed []u32 = seed.time_seed_array(2)
+}
+
+// PRNG is a common interface for all PRNGs that can be used seamlessly with the rand
+// modules's API. It defines all the methods that a PRNG (in the vlib or custom made) must
+// implement in order to ensure that _all_ functions can be used with the generator.
+pub interface PRNG {
+ seed(seed_data []u32)
+ u32() u32
+ u64() u64
+ u32n(max u32) u32
+ u64n(max u64) u64
+ u32_in_range(min u32, max u32) u32
+ u64_in_range(min u64, max u64) u64
+ int() int
+ i64() i64
+ int31() int
+ int63() i64
+ intn(max int) int
+ i64n(max i64) i64
+ int_in_range(min int, max int) int
+ i64_in_range(min i64, max i64) i64
+ f32() f32
+ f64() f64
+ f32n(max f32) f32
+ f64n(max f64) f64
+ f32_in_range(min f32, max f32) f32
+ f64_in_range(min f64, max f64) f64
+}
+
+__global (
+ default_rng &PRNG
+)
+
+// init initializes the default RNG.
+fn init() {
+ default_rng = new_default()
+}
+
+// new_default returns a new instance of the default RNG. If the seed is not provided, the current time will be used to seed the instance.
+pub fn new_default(config PRNGConfigStruct) &PRNG {
+ mut rng := &wyrand.WyRandRNG{}
+ rng.seed(config.seed)
+ return rng
+}
+
+// get_current_rng returns the PRNG instance currently in use. If it is not changed, it will be an instance of wyrand.WyRandRNG.
+pub fn get_current_rng() &PRNG {
+ return default_rng
+}
+
+// set_rng changes the default RNG from wyrand.WyRandRNG (or whatever the last RNG was) to the one
+// provided by the user. Note that this new RNG must be seeded manually with a constant seed or the
+// `seed.time_seed_array()` method. Also, it is recommended to store the old RNG in a variable and
+// should be restored if work with the custom RNG is complete. It is not necessary to restore if the
+// program terminates soon afterwards.
+pub fn set_rng(rng &PRNG) {
+ default_rng = unsafe { rng }
+}
+
+// seed sets the given array of `u32` values as the seed for the `default_rng`. The default_rng is
+// an instance of WyRandRNG which takes 2 u32 values. When using a custom RNG, make sure to use
+// the correct number of u32s.
+pub fn seed(seed []u32) {
+ default_rng.seed(seed)
+}
+
+// u32 returns a uniformly distributed `u32` in range `[0, 2³²)`.
+pub fn u32() u32 {
+ return default_rng.u32()
+}
+
+// u64 returns a uniformly distributed `u64` in range `[0, 2⁶⁴)`.
+pub fn u64() u64 {
+ return default_rng.u64()
+}
+
+// u32n returns a uniformly distributed pseudorandom 32-bit signed positive `u32` in range `[0, max)`.
+pub fn u32n(max u32) u32 {
+ return default_rng.u32n(max)
+}
+
+// u64n returns a uniformly distributed pseudorandom 64-bit signed positive `u64` in range `[0, max)`.
+pub fn u64n(max u64) u64 {
+ return default_rng.u64n(max)
+}
+
+// u32_in_range returns a uniformly distributed pseudorandom 32-bit unsigned `u32` in range `[min, max)`.
+pub fn u32_in_range(min u32, max u32) u32 {
+ return default_rng.u32_in_range(min, max)
+}
+
+// u64_in_range returns a uniformly distributed pseudorandom 64-bit unsigned `u64` in range `[min, max)`.
+pub fn u64_in_range(min u64, max u64) u64 {
+ return default_rng.u64_in_range(min, max)
+}
+
+// int returns a uniformly distributed pseudorandom 32-bit signed (possibly negative) `int`.
+pub fn int() int {
+ return default_rng.int()
+}
+
+// intn returns a uniformly distributed pseudorandom 32-bit signed positive `int` in range `[0, max)`.
+pub fn intn(max int) int {
+ return default_rng.intn(max)
+}
+
+// byte returns a uniformly distributed pseudorandom 8-bit unsigned positive `byte`.
+pub fn byte() byte {
+ return byte(default_rng.u32() & 0xff)
+}
+
+// int_in_range returns a uniformly distributed pseudorandom 32-bit signed int in range `[min, max)`.
+// Both `min` and `max` can be negative, but we must have `min < max`.
+pub fn int_in_range(min int, max int) int {
+ return default_rng.int_in_range(min, max)
+}
+
+// int31 returns a uniformly distributed pseudorandom 31-bit signed positive `int`.
+pub fn int31() int {
+ return default_rng.int31()
+}
+
+// i64 returns a uniformly distributed pseudorandom 64-bit signed (possibly negative) `i64`.
+pub fn i64() i64 {
+ return default_rng.i64()
+}
+
+// i64n returns a uniformly distributed pseudorandom 64-bit signed positive `i64` in range `[0, max)`.
+pub fn i64n(max i64) i64 {
+ return default_rng.i64n(max)
+}
+
+// i64_in_range returns a uniformly distributed pseudorandom 64-bit signed `i64` in range `[min, max)`.
+pub fn i64_in_range(min i64, max i64) i64 {
+ return default_rng.i64_in_range(min, max)
+}
+
+// int63 returns a uniformly distributed pseudorandom 63-bit signed positive `i64`.
+pub fn int63() i64 {
+ return default_rng.int63()
+}
+
+// f32 returns a uniformly distributed 32-bit floating point in range `[0, 1)`.
+pub fn f32() f32 {
+ return default_rng.f32()
+}
+
+// f64 returns a uniformly distributed 64-bit floating point in range `[0, 1)`.
+pub fn f64() f64 {
+ return default_rng.f64()
+}
+
+// f32n returns a uniformly distributed 32-bit floating point in range `[0, max)`.
+pub fn f32n(max f32) f32 {
+ return default_rng.f32n(max)
+}
+
+// f64n returns a uniformly distributed 64-bit floating point in range `[0, max)`.
+pub fn f64n(max f64) f64 {
+ return default_rng.f64n(max)
+}
+
+// f32_in_range returns a uniformly distributed 32-bit floating point in range `[min, max)`.
+pub fn f32_in_range(min f32, max f32) f32 {
+ return default_rng.f32_in_range(min, max)
+}
+
+// f64_in_range returns a uniformly distributed 64-bit floating point in range `[min, max)`.
+pub fn f64_in_range(min f64, max f64) f64 {
+ return default_rng.f64_in_range(min, max)
+}
+
+const (
+ english_letters = 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'
+ hex_chars = 'abcdef0123456789'
+ ascii_chars = '!"#$%&\'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ\\^_`abcdefghijklmnopqrstuvwxyz{|}~'
+)
+
+// string_from_set returns a string of length `len` containing random characters sampled from the given `charset`
+pub fn string_from_set(charset string, len int) string {
+ if len == 0 {
+ return ''
+ }
+ mut buf := unsafe { malloc_noscan(len + 1) }
+ for i in 0 .. len {
+ unsafe {
+ buf[i] = charset[intn(charset.len)]
+ }
+ }
+ unsafe {
+ buf[len] = 0
+ }
+ return unsafe { buf.vstring_with_len(len) }
+}
+
+// string returns a string of length `len` containing random characters in range `[a-zA-Z]`.
+pub fn string(len int) string {
+ return string_from_set(rand.english_letters, len)
+}
+
+// hex returns a hexadecimal number of length `len` containing random characters in range `[a-f0-9]`.
+pub fn hex(len int) string {
+ return string_from_set(rand.hex_chars, len)
+}
+
+// ascii returns a random string of the printable ASCII characters with length `len`.
+pub fn ascii(len int) string {
+ return string_from_set(rand.ascii_chars, len)
+}
+
+// uuid_v4 generates a random (v4) UUID
+// See https://en.wikipedia.org/wiki/Universally_unique_identifier#Version_4_(random)
+pub fn uuid_v4() string {
+ buflen := 36
+ mut buf := unsafe { malloc_noscan(37) }
+ mut i_buf := 0
+ mut x := u64(0)
+ mut d := byte(0)
+ for i_buf < buflen {
+ mut c := 0
+ x = default_rng.u64()
+ // do most of the bit manipulation at once:
+ x &= 0x0F0F0F0F0F0F0F0F
+ x += 0x3030303030303030
+ // write the ASCII codes to the buffer:
+ for c < 8 && i_buf < buflen {
+ d = byte(x)
+ unsafe {
+ buf[i_buf] = if d > 0x39 { d + 0x27 } else { d }
+ }
+ i_buf++
+ c++
+ x = x >> 8
+ }
+ }
+ // there are still some random bits in x:
+ x = x >> 8
+ d = byte(x)
+ unsafe {
+ buf[19] = if d > 0x39 { d + 0x27 } else { d }
+ buf[8] = `-`
+ buf[13] = `-`
+ buf[18] = `-`
+ buf[23] = `-`
+ buf[14] = `4`
+ buf[buflen] = 0
+ return buf.vstring_with_len(buflen)
+ }
+}
+
+const (
+ ulid_encoding = '0123456789ABCDEFGHJKMNPQRSTVWXYZ'
+)
+
+// ulid generates an Unique Lexicographically sortable IDentifier.
+// See https://github.com/ulid/spec .
+// NB: ULIDs can leak timing information, if you make them public, because
+// you can infer the rate at which some resource is being created, like
+// users or business transactions.
+// (https://news.ycombinator.com/item?id=14526173)
+pub fn ulid() string {
+ return ulid_at_millisecond(time.utc().unix_time_milli())
+}
+
+// ulid_at_millisecond does the same as `ulid` but takes a custom Unix millisecond timestamp via `unix_time_milli`.
+pub fn ulid_at_millisecond(unix_time_milli u64) string {
+ buflen := 26
+ mut buf := unsafe { malloc_noscan(27) }
+ mut t := unix_time_milli
+ mut i := 9
+ for i >= 0 {
+ unsafe {
+ buf[i] = rand.ulid_encoding[t & 0x1F]
+ }
+ t = t >> 5
+ i--
+ }
+ // first rand set
+ mut x := default_rng.u64()
+ i = 10
+ for i < 19 {
+ unsafe {
+ buf[i] = rand.ulid_encoding[x & 0x1F]
+ }
+ x = x >> 5
+ i++
+ }
+ // second rand set
+ x = default_rng.u64()
+ for i < 26 {
+ unsafe {
+ buf[i] = rand.ulid_encoding[x & 0x1F]
+ }
+ x = x >> 5
+ i++
+ }
+ unsafe {
+ buf[26] = 0
+ return buf.vstring_with_len(buflen)
+ }
+}