diff options
Diffstat (limited to 'v_windows/v/old/vlib/rand/sys/system_rng.c.v')
-rw-r--r-- | v_windows/v/old/vlib/rand/sys/system_rng.c.v | 275 |
1 files changed, 275 insertions, 0 deletions
diff --git a/v_windows/v/old/vlib/rand/sys/system_rng.c.v b/v_windows/v/old/vlib/rand/sys/system_rng.c.v new file mode 100644 index 0000000..f1c701d --- /dev/null +++ b/v_windows/v/old/vlib/rand/sys/system_rng.c.v @@ -0,0 +1,275 @@ +// Copyright (c) 2019-2021 Alexander Medvednikov. All rights reserved. +// Use of this source code is governed by an MIT license +// that can be found in the LICENSE file. +module sys + +import math.bits +import rand.seed +import rand.constants + +// Implementation note: +// ==================== +// C.rand returns a pseudorandom integer from 0 (inclusive) to C.RAND_MAX (exclusive) +// C.rand() is okay to use within its defined range. +// (See: https://web.archive.org/web/20180801210127/http://eternallyconfuzzled.com/arts/jsw_art_rand.aspx) +// The problem is, this value varies with the libc implementation. On windows, +// for example, RAND_MAX is usually a measly 32767, whereas on (newer) linux it's generally +// 2147483647. The repetition period also varies wildly. In order to provide more entropy +// without altering the underlying algorithm too much, this implementation simply +// requests for more random bits until the necessary width for the integers is achieved. +const ( + rand_limit = u64(C.RAND_MAX) + rand_bitsize = bits.len_64(rand_limit) + u32_iter_count = calculate_iterations_for(32) + u64_iter_count = calculate_iterations_for(64) +) + +fn calculate_iterations_for(bits int) int { + base := bits / sys.rand_bitsize + extra := if bits % sys.rand_bitsize == 0 { 0 } else { 1 } + return base + extra +} + +// SysRNG is the PRNG provided by default in the libc implementiation that V uses. +pub struct SysRNG { +mut: + seed u32 = seed.time_seed_32() +} + +// r.seed() sets the seed of the accepting SysRNG to the given data. +pub fn (mut r SysRNG) seed(seed_data []u32) { + if seed_data.len != 1 { + eprintln('SysRNG needs one 32-bit unsigned integer as the seed.') + exit(1) + } + r.seed = seed_data[0] + C.srand(r.seed) +} + +// r.default_rand() exposes the default behavior of the system's RNG +// (equivalent to calling C.rand()). Recommended for testing/comparison +// b/w V and other languages using libc and not for regular use. +// This is also a one-off feature of SysRNG, similar to the global seed +// situation. Other generators will not have this. +[inline] +pub fn (r SysRNG) default_rand() int { + return C.rand() +} + +// r.u32() returns a pseudorandom u32 value less than 2^32 +[inline] +pub fn (r SysRNG) u32() u32 { + mut result := u32(C.rand()) + for i in 1 .. sys.u32_iter_count { + result = result ^ (u32(C.rand()) << (sys.rand_bitsize * i)) + } + return result +} + +// r.u64() returns a pseudorandom u64 value less than 2^64 +[inline] +pub fn (r SysRNG) u64() u64 { + mut result := u64(C.rand()) + for i in 1 .. sys.u64_iter_count { + result = result ^ (u64(C.rand()) << (sys.rand_bitsize * i)) + } + return result +} + +// r.u32n(max) returns a pseudorandom u32 value that is guaranteed to be less than max +[inline] +pub fn (r SysRNG) u32n(max u32) u32 { + if max == 0 { + eprintln('max must be positive integer') + exit(1) + } + // Owing to the pigeon-hole principle, we can't simply do + // val := rng.u32() % max. + // It'll wreck the properties of the distribution unless + // max evenly divides 2^32. So we divide evenly to + // the closest power of two. Then we loop until we find + // an int in the required range + bit_len := bits.len_32(max) + if bit_len == 32 { + for { + value := r.u32() + if value < max { + return value + } + } + } else { + mask := (u32(1) << (bit_len + 1)) - 1 + for { + value := r.u32() & mask + if value < max { + return value + } + } + } + return u32(0) +} + +// r.u64n(max) returns a pseudorandom u64 value that is guaranteed to be less than max +[inline] +pub fn (r SysRNG) u64n(max u64) u64 { + if max == 0 { + eprintln('max must be positive integer') + exit(1) + } + // Similar procedure for u64s + bit_len := bits.len_64(max) + if bit_len == 64 { + for { + value := r.u64() + if value < max { + return value + } + } + } else { + mask := (u64(1) << (bit_len + 1)) - 1 + for { + value := r.u64() & mask + if value < max { + return value + } + } + } + return u64(0) +} + +// r.u32n(min, max) returns a pseudorandom u32 value that is guaranteed to be in [min, max) +[inline] +pub fn (r SysRNG) u32_in_range(min u32, max u32) u32 { + if max <= min { + eprintln('max must be greater than min') + exit(1) + } + return min + r.u32n(max - min) +} + +// r.u64n(min, max) returns a pseudorandom u64 value that is guaranteed to be in [min, max) +[inline] +pub fn (r SysRNG) u64_in_range(min u64, max u64) u64 { + if max <= min { + eprintln('max must be greater than min') + exit(1) + } + return min + r.u64n(max - min) +} + +// r.int() returns a pseudorandom 32-bit int (which may be negative) +[inline] +pub fn (r SysRNG) int() int { + return int(r.u32()) +} + +// r.i64() returns a pseudorandom 64-bit i64 (which may be negative) +[inline] +pub fn (r SysRNG) i64() i64 { + return i64(r.u64()) +} + +// r.int31() returns a pseudorandom 31-bit int which is non-negative +[inline] +pub fn (r SysRNG) int31() int { + return int(r.u32() & constants.u31_mask) // Set the 32nd bit to 0. +} + +// r.int63() returns a pseudorandom 63-bit int which is non-negative +[inline] +pub fn (r SysRNG) int63() i64 { + return i64(r.u64() & constants.u63_mask) // Set the 64th bit to 0. +} + +// r.intn(max) returns a pseudorandom int that lies in [0, max) +[inline] +pub fn (r SysRNG) intn(max int) int { + if max <= 0 { + eprintln('max has to be positive.') + exit(1) + } + return int(r.u32n(u32(max))) +} + +// r.i64n(max) returns a pseudorandom i64 that lies in [0, max) +[inline] +pub fn (r SysRNG) i64n(max i64) i64 { + if max <= 0 { + eprintln('max has to be positive.') + exit(1) + } + return i64(r.u64n(u64(max))) +} + +// r.int_in_range(min, max) returns a pseudorandom int that lies in [min, max) +[inline] +pub fn (r SysRNG) int_in_range(min int, max int) int { + if max <= min { + eprintln('max must be greater than min') + exit(1) + } + // This supports negative ranges like [-10, -5) because the difference is positive + return min + r.intn(max - min) +} + +// r.i64_in_range(min, max) returns a pseudorandom i64 that lies in [min, max) +[inline] +pub fn (r SysRNG) i64_in_range(min i64, max i64) i64 { + if max <= min { + eprintln('max must be greater than min') + exit(1) + } + return min + r.i64n(max - min) +} + +// r.f32() returns a pseudorandom f32 value between 0.0 (inclusive) and 1.0 (exclusive) i.e [0, 1) +[inline] +pub fn (r SysRNG) f32() f32 { + return f32(r.u32()) / constants.max_u32_as_f32 +} + +// r.f64() returns a pseudorandom f64 value between 0.0 (inclusive) and 1.0 (exclusive) i.e [0, 1) +[inline] +pub fn (r SysRNG) f64() f64 { + return f64(r.u64()) / constants.max_u64_as_f64 +} + +// r.f32n() returns a pseudorandom f32 value in [0, max) +[inline] +pub fn (r SysRNG) f32n(max f32) f32 { + if max <= 0 { + eprintln('max has to be positive.') + exit(1) + } + return r.f32() * max +} + +// r.f64n() returns a pseudorandom f64 value in [0, max) +[inline] +pub fn (r SysRNG) f64n(max f64) f64 { + if max <= 0 { + eprintln('max has to be positive.') + exit(1) + } + return r.f64() * max +} + +// r.f32_in_range(min, max) returns a pseudorandom f32 that lies in [min, max) +[inline] +pub fn (r SysRNG) f32_in_range(min f32, max f32) f32 { + if max <= min { + eprintln('max must be greater than min') + exit(1) + } + return min + r.f32n(max - min) +} + +// r.i64_in_range(min, max) returns a pseudorandom i64 that lies in [min, max) +[inline] +pub fn (r SysRNG) f64_in_range(min f64, max f64) f64 { + if max <= min { + eprintln('max must be greater than min') + exit(1) + } + return min + r.f64n(max - min) +} |