diff options
Diffstat (limited to 'v_windows/v/old/vlib/strconv/f64_str.v')
-rw-r--r-- | v_windows/v/old/vlib/strconv/f64_str.v | 418 |
1 files changed, 418 insertions, 0 deletions
diff --git a/v_windows/v/old/vlib/strconv/f64_str.v b/v_windows/v/old/vlib/strconv/f64_str.v new file mode 100644 index 0000000..6be4354 --- /dev/null +++ b/v_windows/v/old/vlib/strconv/f64_str.v @@ -0,0 +1,418 @@ +module strconv + +/*============================================================================= + +f64 to string + +Copyright (c) 2019-2021 Dario Deledda. All rights reserved. +Use of this source code is governed by an MIT license +that can be found in the LICENSE file. + +This file contains the f64 to string functions + +These functions are based on the work of: +Publication:PLDI 2018: Proceedings of the 39th ACM SIGPLAN +Conference on Programming Language Design and ImplementationJune 2018 +Pages 270–282 https://doi.org/10.1145/3192366.3192369 + +inspired by the Go version here: +https://github.com/cespare/ryu/tree/ba56a33f39e3bbbfa409095d0f9ae168a595feea + +=============================================================================*/ + +// pow of ten table used by n_digit reduction +const ( + ten_pow_table_64 = [ + u64(1), + u64(10), + u64(100), + u64(1000), + u64(10000), + u64(100000), + u64(1000000), + u64(10000000), + u64(100000000), + u64(1000000000), + u64(10000000000), + u64(100000000000), + u64(1000000000000), + u64(10000000000000), + u64(100000000000000), + u64(1000000000000000), + u64(10000000000000000), + u64(100000000000000000), + u64(1000000000000000000), + u64(10000000000000000000), + ] +) + +//============================================================================= +// Conversion Functions +//============================================================================= +const ( + mantbits64 = u32(52) + expbits64 = u32(11) + bias64 = 1023 // f64 exponent bias + maxexp64 = 2047 +) + +[direct_array_access] +fn (d Dec64) get_string_64(neg bool, i_n_digit int, i_pad_digit int) string { + mut n_digit := i_n_digit + 1 + pad_digit := i_pad_digit + 1 + mut out := d.m + mut d_exp := d.e + // mut out_len := decimal_len_64(out) + mut out_len := dec_digits(out) + out_len_original := out_len + + mut fw_zeros := 0 + if pad_digit > out_len { + fw_zeros = pad_digit - out_len + } + + mut buf := []byte{len: (out_len + 6 + 1 + 1 + fw_zeros)} // sign + mant_len + . + e + e_sign + exp_len(2) + \0} + mut i := 0 + + if neg { + buf[i] = `-` + i++ + } + + mut disp := 0 + if out_len <= 1 { + disp = 1 + } + + // rounding last used digit + if n_digit < out_len { + // println("out:[$out]") + out += strconv.ten_pow_table_64[out_len - n_digit - 1] * 5 // round to up + out /= strconv.ten_pow_table_64[out_len - n_digit] + // println("out1:[$out] ${d.m / ten_pow_table_64[out_len - n_digit ]}") + if d.m / strconv.ten_pow_table_64[out_len - n_digit] < out { + d_exp++ + n_digit++ + } + + // println("cmp: ${d.m/ten_pow_table_64[out_len - n_digit ]} ${out/ten_pow_table_64[out_len - n_digit ]}") + + out_len = n_digit + // println("orig: ${out_len_original} new len: ${out_len} out:[$out]") + } + + y := i + out_len + mut x := 0 + for x < (out_len - disp - 1) { + buf[y - x] = `0` + byte(out % 10) + out /= 10 + i++ + x++ + } + + // no decimal digits needed, end here + if i_n_digit == 0 { + unsafe { + buf[i] = 0 + return tos(&byte(&buf[0]), i) + } + } + + if out_len >= 1 { + buf[y - x] = `.` + x++ + i++ + } + + if y - x >= 0 { + buf[y - x] = `0` + byte(out % 10) + i++ + } + + for fw_zeros > 0 { + buf[i] = `0` + i++ + fw_zeros-- + } + + buf[i] = `e` + i++ + + mut exp := d_exp + out_len_original - 1 + if exp < 0 { + buf[i] = `-` + i++ + exp = -exp + } else { + buf[i] = `+` + i++ + } + + // Always print at least two digits to match strconv's formatting. + d2 := exp % 10 + exp /= 10 + d1 := exp % 10 + d0 := exp / 10 + if d0 > 0 { + buf[i] = `0` + byte(d0) + i++ + } + buf[i] = `0` + byte(d1) + i++ + buf[i] = `0` + byte(d2) + i++ + buf[i] = 0 + + return unsafe { + tos(&byte(&buf[0]), i) + } +} + +fn f64_to_decimal_exact_int(i_mant u64, exp u64) (Dec64, bool) { + mut d := Dec64{} + e := exp - strconv.bias64 + if e > strconv.mantbits64 { + return d, false + } + shift := strconv.mantbits64 - e + mant := i_mant | u64(0x0010_0000_0000_0000) // implicit 1 + // mant := i_mant | (1 << mantbits64) // implicit 1 + d.m = mant >> shift + if (d.m << shift) != mant { + return d, false + } + + for (d.m % 10) == 0 { + d.m /= 10 + d.e++ + } + return d, true +} + +fn f64_to_decimal(mant u64, exp u64) Dec64 { + mut e2 := 0 + mut m2 := u64(0) + if exp == 0 { + // We subtract 2 so that the bounds computation has + // 2 additional bits. + e2 = 1 - strconv.bias64 - int(strconv.mantbits64) - 2 + m2 = mant + } else { + e2 = int(exp) - strconv.bias64 - int(strconv.mantbits64) - 2 + m2 = (u64(1) << strconv.mantbits64) | mant + } + even := (m2 & 1) == 0 + accept_bounds := even + + // Step 2: Determine the interval of valid decimal representations. + mv := u64(4 * m2) + mm_shift := bool_to_u64(mant != 0 || exp <= 1) + + // Step 3: Convert to a decimal power base uing 128-bit arithmetic. + mut vr := u64(0) + mut vp := u64(0) + mut vm := u64(0) + mut e10 := 0 + mut vm_is_trailing_zeros := false + mut vr_is_trailing_zeros := false + + if e2 >= 0 { + // This expression is slightly faster than max(0, log10Pow2(e2) - 1). + q := log10_pow2(e2) - bool_to_u32(e2 > 3) + e10 = int(q) + k := pow5_inv_num_bits_64 + pow5_bits(int(q)) - 1 + i := -e2 + int(q) + k + + mul := pow5_inv_split_64[q] + vr = mul_shift_64(u64(4) * m2, mul, i) + vp = mul_shift_64(u64(4) * m2 + u64(2), mul, i) + vm = mul_shift_64(u64(4) * m2 - u64(1) - mm_shift, mul, i) + if q <= 21 { + // This should use q <= 22, but I think 21 is also safe. + // Smaller values may still be safe, but it's more + // difficult to reason about them. Only one of mp, mv, + // and mm can be a multiple of 5, if any. + if mv % 5 == 0 { + vr_is_trailing_zeros = multiple_of_power_of_five_64(mv, q) + } else if accept_bounds { + // Same as min(e2 + (^mm & 1), pow5Factor64(mm)) >= q + // <=> e2 + (^mm & 1) >= q && pow5Factor64(mm) >= q + // <=> true && pow5Factor64(mm) >= q, since e2 >= q. + vm_is_trailing_zeros = multiple_of_power_of_five_64(mv - 1 - mm_shift, + q) + } else if multiple_of_power_of_five_64(mv + 2, q) { + vp-- + } + } + } else { + // This expression is slightly faster than max(0, log10Pow5(-e2) - 1). + q := log10_pow5(-e2) - bool_to_u32(-e2 > 1) + e10 = int(q) + e2 + i := -e2 - int(q) + k := pow5_bits(i) - pow5_num_bits_64 + j := int(q) - k + mul := pow5_split_64[i] + vr = mul_shift_64(u64(4) * m2, mul, j) + vp = mul_shift_64(u64(4) * m2 + u64(2), mul, j) + vm = mul_shift_64(u64(4) * m2 - u64(1) - mm_shift, mul, j) + if q <= 1 { + // {vr,vp,vm} is trailing zeros if {mv,mp,mm} has at least q trailing 0 bits. + // mv = 4 * m2, so it always has at least two trailing 0 bits. + vr_is_trailing_zeros = true + if accept_bounds { + // mm = mv - 1 - mmShift, so it has 1 trailing 0 bit iff mmShift == 1. + vm_is_trailing_zeros = (mm_shift == 1) + } else { + // mp = mv + 2, so it always has at least one trailing 0 bit. + vp-- + } + } else if q < 63 { // TODO(ulfjack/cespare): Use a tighter bound here. + // We need to compute min(ntz(mv), pow5Factor64(mv) - e2) >= q - 1 + // <=> ntz(mv) >= q - 1 && pow5Factor64(mv) - e2 >= q - 1 + // <=> ntz(mv) >= q - 1 (e2 is negative and -e2 >= q) + // <=> (mv & ((1 << (q - 1)) - 1)) == 0 + // We also need to make sure that the left shift does not overflow. + vr_is_trailing_zeros = multiple_of_power_of_two_64(mv, q - 1) + } + } + + // Step 4: Find the shortest decimal representation + // in the interval of valid representations. + mut removed := 0 + mut last_removed_digit := byte(0) + mut out := u64(0) + // On average, we remove ~2 digits. + if vm_is_trailing_zeros || vr_is_trailing_zeros { + // General case, which happens rarely (~0.7%). + for { + vp_div_10 := vp / 10 + vm_div_10 := vm / 10 + if vp_div_10 <= vm_div_10 { + break + } + vm_mod_10 := vm % 10 + vr_div_10 := vr / 10 + vr_mod_10 := vr % 10 + vm_is_trailing_zeros = vm_is_trailing_zeros && vm_mod_10 == 0 + vr_is_trailing_zeros = vr_is_trailing_zeros && (last_removed_digit == 0) + last_removed_digit = byte(vr_mod_10) + vr = vr_div_10 + vp = vp_div_10 + vm = vm_div_10 + removed++ + } + if vm_is_trailing_zeros { + for { + vm_div_10 := vm / 10 + vm_mod_10 := vm % 10 + if vm_mod_10 != 0 { + break + } + vp_div_10 := vp / 10 + vr_div_10 := vr / 10 + vr_mod_10 := vr % 10 + vr_is_trailing_zeros = vr_is_trailing_zeros && (last_removed_digit == 0) + last_removed_digit = byte(vr_mod_10) + vr = vr_div_10 + vp = vp_div_10 + vm = vm_div_10 + removed++ + } + } + if vr_is_trailing_zeros && (last_removed_digit == 5) && (vr % 2) == 0 { + // Round even if the exact number is .....50..0. + last_removed_digit = 4 + } + out = vr + // We need to take vr + 1 if vr is outside bounds + // or we need to round up. + if (vr == vm && (!accept_bounds || !vm_is_trailing_zeros)) || last_removed_digit >= 5 { + out++ + } + } else { + // Specialized for the common case (~99.3%). + // Percentages below are relative to this. + mut round_up := false + for vp / 100 > vm / 100 { + // Optimization: remove two digits at a time (~86.2%). + round_up = (vr % 100) >= 50 + vr /= 100 + vp /= 100 + vm /= 100 + removed += 2 + } + // Loop iterations below (approximately), without optimization above: + // 0: 0.03%, 1: 13.8%, 2: 70.6%, 3: 14.0%, 4: 1.40%, 5: 0.14%, 6+: 0.02% + // Loop iterations below (approximately), with optimization above: + // 0: 70.6%, 1: 27.8%, 2: 1.40%, 3: 0.14%, 4+: 0.02% + for vp / 10 > vm / 10 { + round_up = (vr % 10) >= 5 + vr /= 10 + vp /= 10 + vm /= 10 + removed++ + } + // We need to take vr + 1 if vr is outside bounds + // or we need to round up. + out = vr + bool_to_u64(vr == vm || round_up) + } + + return Dec64{ + m: out + e: e10 + removed + } +} + +//============================================================================= +// String Functions +//============================================================================= + +// f64_to_str return a string in scientific notation with max n_digit after the dot +pub fn f64_to_str(f f64, n_digit int) string { + mut u1 := Uf64{} + u1.f = f + u := unsafe { u1.u } + + neg := (u >> (strconv.mantbits64 + strconv.expbits64)) != 0 + mant := u & ((u64(1) << strconv.mantbits64) - u64(1)) + exp := (u >> strconv.mantbits64) & ((u64(1) << strconv.expbits64) - u64(1)) + // println("s:${neg} mant:${mant} exp:${exp} float:${f} byte:${u1.u:016lx}") + + // Exit early for easy cases. + if (exp == strconv.maxexp64) || (exp == 0 && mant == 0) { + return get_string_special(neg, exp == 0, mant == 0) + } + + mut d, ok := f64_to_decimal_exact_int(mant, exp) + if !ok { + // println("to_decimal") + d = f64_to_decimal(mant, exp) + } + // println("${d.m} ${d.e}") + return d.get_string_64(neg, n_digit, 0) +} + +// f64_to_str return a string in scientific notation with max n_digit after the dot +pub fn f64_to_str_pad(f f64, n_digit int) string { + mut u1 := Uf64{} + u1.f = f + u := unsafe { u1.u } + + neg := (u >> (strconv.mantbits64 + strconv.expbits64)) != 0 + mant := u & ((u64(1) << strconv.mantbits64) - u64(1)) + exp := (u >> strconv.mantbits64) & ((u64(1) << strconv.expbits64) - u64(1)) + // println("s:${neg} mant:${mant} exp:${exp} float:${f} byte:${u1.u:016lx}") + + // Exit early for easy cases. + if (exp == strconv.maxexp64) || (exp == 0 && mant == 0) { + return get_string_special(neg, exp == 0, mant == 0) + } + + mut d, ok := f64_to_decimal_exact_int(mant, exp) + if !ok { + // println("to_decimal") + d = f64_to_decimal(mant, exp) + } + // println("DEBUG: ${d.m} ${d.e}") + return d.get_string_64(neg, n_digit, n_digit) +} |