aboutsummaryrefslogtreecommitdiff
path: root/v_windows/v/old/vlib/strings/similarity.v
diff options
context:
space:
mode:
Diffstat (limited to 'v_windows/v/old/vlib/strings/similarity.v')
-rw-r--r--v_windows/v/old/vlib/strings/similarity.v69
1 files changed, 69 insertions, 0 deletions
diff --git a/v_windows/v/old/vlib/strings/similarity.v b/v_windows/v/old/vlib/strings/similarity.v
new file mode 100644
index 0000000..8d8de95
--- /dev/null
+++ b/v_windows/v/old/vlib/strings/similarity.v
@@ -0,0 +1,69 @@
+module strings
+
+// #-js
+// use levenshtein distance algorithm to calculate
+// the distance between between two strings (lower is closer)
+pub fn levenshtein_distance(a string, b string) int {
+ mut f := [0].repeat(b.len + 1)
+ for j in 0 .. f.len {
+ f[j] = j
+ }
+ for ca in a {
+ mut j := 1
+ mut fj1 := f[0]
+ f[0]++
+ for cb in b {
+ mut mn := if f[j] + 1 <= f[j - 1] + 1 { f[j] + 1 } else { f[j - 1] + 1 }
+ if cb != ca {
+ mn = if mn <= fj1 + 1 { mn } else { fj1 + 1 }
+ } else {
+ mn = if mn <= fj1 { mn } else { fj1 }
+ }
+ fj1 = f[j]
+ f[j] = mn
+ j++
+ }
+ }
+ return f[f.len - 1]
+}
+
+// use levenshtein distance algorithm to calculate
+// how similar two strings are as a percentage (higher is closer)
+pub fn levenshtein_distance_percentage(a string, b string) f32 {
+ d := levenshtein_distance(a, b)
+ l := if a.len >= b.len { a.len } else { b.len }
+ return (1.00 - f32(d) / f32(l)) * 100.00
+}
+
+// implementation of Sørensen–Dice coefficient.
+// find the similarity between two strings.
+// returns coefficient between 0.0 (not similar) and 1.0 (exact match).
+pub fn dice_coefficient(s1 string, s2 string) f32 {
+ if s1.len == 0 || s2.len == 0 {
+ return 0.0
+ }
+ if s1 == s2 {
+ return 1.0
+ }
+ if s1.len < 2 || s2.len < 2 {
+ return 0.0
+ }
+ a := if s1.len > s2.len { s1 } else { s2 }
+ b := if a == s1 { s2 } else { s1 }
+ mut first_bigrams := map[string]int{}
+ for i in 0 .. a.len - 1 {
+ bigram := a[i..i + 2]
+ q := if bigram in first_bigrams { first_bigrams[bigram] + 1 } else { 1 }
+ first_bigrams[bigram] = q
+ }
+ mut intersection_size := 0
+ for i in 0 .. b.len - 1 {
+ bigram := b[i..i + 2]
+ count := if bigram in first_bigrams { first_bigrams[bigram] } else { 0 }
+ if count > 0 {
+ first_bigrams[bigram] = count - 1
+ intersection_size++
+ }
+ }
+ return (2.0 * f32(intersection_size)) / (f32(a.len) + f32(b.len) - 2)
+}