diff options
Diffstat (limited to 'v_windows/v/vlib/crypto/aes/block_generic.v')
-rw-r--r-- | v_windows/v/vlib/crypto/aes/block_generic.v | 183 |
1 files changed, 183 insertions, 0 deletions
diff --git a/v_windows/v/vlib/crypto/aes/block_generic.v b/v_windows/v/vlib/crypto/aes/block_generic.v new file mode 100644 index 0000000..5da938e --- /dev/null +++ b/v_windows/v/vlib/crypto/aes/block_generic.v @@ -0,0 +1,183 @@ +// Copyright (c) 2019-2021 Alexander Medvednikov. All rights reserved. +// Use of this source code is governed by an MIT license +// that can be found in the LICENSE file. +// This implementation is derived from the golang implementation +// which itself is derived in part from the reference +// ANSI C implementation, which carries the following notice: +// +// rijndael-alg-fst.c +// +// @version 3.0 (December 2000) +// +// Optimised ANSI C code for the Rijndael cipher (now AES) +// +// @author Vincent Rijmen <vincent.rijmen@esat.kuleuven.ac.be> +// @author Antoon Bosselaers <antoon.bosselaers@esat.kuleuven.ac.be> +// @author Paulo Barreto <paulo.barreto@Terra.com.br> +// +// This code is hereby placed in the public domain. +// +// THIS SOFTWARE IS PROVIDED BY THE AUTHORS ''AS IS'' AND ANY EXPRESS +// OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED +// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +// ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE +// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR +// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF +// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR +// BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, +// WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE +// OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, +// EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +// +// See FIPS 197 for specification, and see Daemen and Rijmen's Rijndael submission +// for implementation details. +// https://csrc.nist.gov/csrc/media/publications/fips/197/final/documents/fips-197.pdf +// https://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf +module aes + +import encoding.binary + +// Encrypt one block from src into dst, using the expanded key xk. +fn encrypt_block_generic(xk []u32, mut dst []byte, src []byte) { + _ = src[15] // early bounds check + mut s0 := binary.big_endian_u32(src[..4]) + mut s1 := binary.big_endian_u32(src[4..8]) + mut s2 := binary.big_endian_u32(src[8..12]) + mut s3 := binary.big_endian_u32(src[12..16]) + // First round just XORs input with key. + s0 ^= xk[0] + s1 ^= xk[1] + s2 ^= xk[2] + s3 ^= xk[3] + // Middle rounds shuffle using tables. + // Number of rounds is set by length of expanded key. + nr := xk.len / 4 - 2 // - 2: one above, one more below + mut k := 4 + mut t0 := u32(0) + mut t1 := u32(0) + mut t2 := u32(0) + mut t3 := u32(0) + for _ in 0 .. nr { + t0 = xk[k + 0] ^ te0[byte(s0 >> 24)] ^ te1[byte(s1 >> 16)] ^ te2[byte(s2 >> 8)] ^ u32(te3[byte(s3)]) + t1 = xk[k + 1] ^ te0[byte(s1 >> 24)] ^ te1[byte(s2 >> 16)] ^ te2[byte(s3 >> 8)] ^ u32(te3[byte(s0)]) + t2 = xk[k + 2] ^ te0[byte(s2 >> 24)] ^ te1[byte(s3 >> 16)] ^ te2[byte(s0 >> 8)] ^ u32(te3[byte(s1)]) + t3 = xk[k + 3] ^ te0[byte(s3 >> 24)] ^ te1[byte(s0 >> 16)] ^ te2[byte(s1 >> 8)] ^ u32(te3[byte(s2)]) + k += 4 + s0 = t0 + s1 = t1 + s2 = t2 + s3 = t3 + } + // Last round uses s-box directly and XORs to produce output. + s0 = s_box0[t0 >> 24] << 24 | s_box0[t1 >> 16 & 0xff] << 16 | u32(s_box0[t2 >> 8 & 0xff] << 8) | s_box0[t3 & u32(0xff)] + s1 = s_box0[t1 >> 24] << 24 | s_box0[t2 >> 16 & 0xff] << 16 | u32(s_box0[t3 >> 8 & 0xff] << 8) | s_box0[t0 & u32(0xff)] + s2 = s_box0[t2 >> 24] << 24 | s_box0[t3 >> 16 & 0xff] << 16 | u32(s_box0[t0 >> 8 & 0xff] << 8) | s_box0[t1 & u32(0xff)] + s3 = s_box0[t3 >> 24] << 24 | s_box0[t0 >> 16 & 0xff] << 16 | u32(s_box0[t1 >> 8 & 0xff] << 8) | s_box0[t2 & u32(0xff)] + s0 ^= xk[k + 0] + s1 ^= xk[k + 1] + s2 ^= xk[k + 2] + s3 ^= xk[k + 3] + _ := dst[15] // early bounds check + binary.big_endian_put_u32(mut (*dst)[0..4], s0) + binary.big_endian_put_u32(mut (*dst)[4..8], s1) + binary.big_endian_put_u32(mut (*dst)[8..12], s2) + binary.big_endian_put_u32(mut (*dst)[12..16], s3) +} + +// Decrypt one block from src into dst, using the expanded key xk. +fn decrypt_block_generic(xk []u32, mut dst []byte, src []byte) { + _ = src[15] // early bounds check + mut s0 := binary.big_endian_u32(src[0..4]) + mut s1 := binary.big_endian_u32(src[4..8]) + mut s2 := binary.big_endian_u32(src[8..12]) + mut s3 := binary.big_endian_u32(src[12..16]) + // First round just XORs input with key. + s0 ^= xk[0] + s1 ^= xk[1] + s2 ^= xk[2] + s3 ^= xk[3] + // Middle rounds shuffle using tables. + // Number of rounds is set by length of expanded key. + nr := xk.len / 4 - 2 // - 2: one above, one more below + mut k := 4 + mut t0 := u32(0) + mut t1 := u32(0) + mut t2 := u32(0) + mut t3 := u32(0) + for _ in 0 .. nr { + t0 = xk[k + 0] ^ td0[byte(s0 >> 24)] ^ td1[byte(s3 >> 16)] ^ td2[byte(s2 >> 8)] ^ u32(td3[byte(s1)]) + t1 = xk[k + 1] ^ td0[byte(s1 >> 24)] ^ td1[byte(s0 >> 16)] ^ td2[byte(s3 >> 8)] ^ u32(td3[byte(s2)]) + t2 = xk[k + 2] ^ td0[byte(s2 >> 24)] ^ td1[byte(s1 >> 16)] ^ td2[byte(s0 >> 8)] ^ u32(td3[byte(s3)]) + t3 = xk[k + 3] ^ td0[byte(s3 >> 24)] ^ td1[byte(s2 >> 16)] ^ td2[byte(s1 >> 8)] ^ u32(td3[byte(s0)]) + k += 4 + s0 = t0 + s1 = t1 + s2 = t2 + s3 = t3 + } + // Last round uses s-box directly and XORs to produce output. + s0 = u32(s_box1[t0 >> 24]) << 24 | u32(s_box1[t3 >> 16 & 0xff]) << 16 | u32(s_box1[t2 >> 8 & 0xff] << 8) | u32(s_box1[t1 & u32(0xff)]) + s1 = u32(s_box1[t1 >> 24]) << 24 | u32(s_box1[t0 >> 16 & 0xff]) << 16 | u32(s_box1[t3 >> 8 & 0xff] << 8) | u32(s_box1[t2 & u32(0xff)]) + s2 = u32(s_box1[t2 >> 24]) << 24 | u32(s_box1[t1 >> 16 & 0xff]) << 16 | u32(s_box1[t0 >> 8 & 0xff] << 8) | u32(s_box1[t3 & u32(0xff)]) + s3 = u32(s_box1[t3 >> 24]) << 24 | u32(s_box1[t2 >> 16 & 0xff]) << 16 | u32(s_box1[t1 >> 8 & 0xff] << 8) | u32(s_box1[t0 & u32(0xff)]) + s0 ^= xk[k + 0] + s1 ^= xk[k + 1] + s2 ^= xk[k + 2] + s3 ^= xk[k + 3] + _ = dst[15] // early bounds check + binary.big_endian_put_u32(mut (*dst)[..4], s0) + binary.big_endian_put_u32(mut (*dst)[4..8], s1) + binary.big_endian_put_u32(mut (*dst)[8..12], s2) + binary.big_endian_put_u32(mut (*dst)[12..16], s3) +} + +// Apply s_box0 to each byte in w. +fn subw(w u32) u32 { + return u32(s_box0[w >> 24]) << 24 | u32(s_box0[w >> 16 & 0xff] << 16) | u32(s_box0[w >> 8 & 0xff] << 8) | u32(s_box0[w & u32(0xff)]) +} + +// Rotate +fn rotw(w u32) u32 { + return (w << 8) | (w >> 24) +} + +// Key expansion algorithm. See FIPS-197, Figure 11. +// Their rcon[i] is our powx[i-1] << 24. +fn expand_key_generic(key []byte, mut enc []u32, mut dec []u32) { + // Encryption key setup. + mut i := 0 + nk := key.len / 4 + for i = 0; i < nk; i++ { + if 4 * i >= key.len { + break + } + enc[i] = binary.big_endian_u32(key[4 * i..]) + } + for i < enc.len { + mut t := enc[i - 1] + if i % nk == 0 { + t = subw(rotw(t)) ^ u32(pow_x[i / nk - 1]) << 24 + } else if nk > 6 && i % nk == 4 { + t = subw(t) + } + enc[i] = enc[i - nk] ^ t + i++ + } + // Derive decryption key from encryption key. + // Reverse the 4-word round key sets from enc to produce dec. + // All sets but the first and last get the MixColumn transform applied. + if dec.len == 0 { + return + } + n := enc.len + for i = 0; i < n; i += 4 { + ei := n - i - 4 + for j in 0 .. 4 { + mut x := enc[ei + j] + if i > 0 && i + 4 < n { + x = td0[s_box0[x >> 24]] ^ td1[s_box0[x >> 16 & 0xff]] ^ td2[s_box0[x >> 8 & 0xff]] ^ td3[s_box0[x & u32(0xff)]] + } + dec[i + j] = x + } + } +} |