aboutsummaryrefslogtreecommitdiff
path: root/v_windows/v/examples/sokol/03_march_tracing_glsl/rt_glsl.v
blob: 73a85a31aaa36a12310554829ba4ca3297f151fd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
/**********************************************************************
*
* Sokol 3d cube demo
*
* Copyright (c) 2021 Dario Deledda. All rights reserved.
* Use of this source code is governed by an MIT license
* that can be found in the LICENSE file.
*
* HOW TO COMPILE SHADERS:
* - download the sokol shader convertor tool from https://github.com/floooh/sokol-tools-bin
*
* - compile the .glsl shader with:
* linux  :  sokol-shdc --input rt_glsl.glsl --output rt_glsl.h --slang glsl330
* windows:  sokol-shdc.exe --input rt_glsl.glsl --output rt_glsl.h --slang glsl330
*
* --slang parameter can be:
* - glsl330: desktop GL
* - glsl100: GLES2 / WebGL
* - glsl300es: GLES3 / WebGL2
* - hlsl4: D3D11
* - hlsl5: D3D11
* - metal_macos: Metal on macOS
* - metal_ios: Metal on iOS device
* - metal_sim: Metal on iOS simulator
* - wgpu: WebGPU
*
* you can have multiple platforms at the same time passing parameters like this: --slang glsl330:hlsl5:metal_macos
* for further infos have a look at the sokol shader tool docs.
*
* TODO:
* - frame counter
**********************************************************************/
import gg
import gg.m4
import gx
// import math
import sokol.sapp
import sokol.gfx
import sokol.sgl
import time

// GLSL Include and functions

#flag -I @VMODROOT/.
#include "rt_glsl.h" #Please use sokol-shdc to generate the necessary rt_glsl.h file from rt_glsl.glsl (see the instructions at the top of this file)

fn C.rt_shader_desc(gfx.Backend) &C.sg_shader_desc

const (
	win_width  = 800
	win_height = 800
	bg_color   = gx.white
)

struct App {
mut:
	gg          &gg.Context
	texture     C.sg_image
	init_flag   bool
	frame_count int

	mouse_x int = -1
	mouse_y int = -1
	// glsl
	cube_pip_glsl C.sg_pipeline
	cube_bind     C.sg_bindings
	// time
	ticks i64
}

/******************************************************************************
* Texture functions
******************************************************************************/
fn create_texture(w int, h int, buf &byte) C.sg_image {
	sz := w * h * 4
	mut img_desc := C.sg_image_desc{
		width: w
		height: h
		num_mipmaps: 0
		min_filter: .linear
		mag_filter: .linear
		// usage: .dynamic
		wrap_u: .clamp_to_edge
		wrap_v: .clamp_to_edge
		label: &byte(0)
		d3d11_texture: 0
	}
	// comment if .dynamic is enabled
	img_desc.data.subimage[0][0] = C.sg_range{
		ptr: buf
		size: size_t(sz)
	}

	sg_img := C.sg_make_image(&img_desc)
	return sg_img
}

fn destroy_texture(sg_img C.sg_image) {
	C.sg_destroy_image(sg_img)
}

// Use only if usage: .dynamic is enabled
fn update_text_texture(sg_img C.sg_image, w int, h int, buf &byte) {
	sz := w * h * 4
	mut tmp_sbc := C.sg_image_data{}
	tmp_sbc.subimage[0][0] = C.sg_range{
		ptr: buf
		size: size_t(sz)
	}
	C.sg_update_image(sg_img, &tmp_sbc)
}

/******************************************************************************
* Draw functions
******************************************************************************
Cube vertex buffer with packed vertex formats for color and texture coords.
		Note that a vertex format which must be portable across all
		backends must only use the normalized integer formats
		(BYTE4N, UBYTE4N, SHORT2N, SHORT4N), which can be converted
		to floating point formats in the vertex shader inputs.
		The reason is that D3D11 cannot convert from non-normalized
		formats to floating point inputs (only to integer inputs),
		and WebGL2 / GLES2 don't support integer vertex shader inputs.
*/

struct Vertex_t {
	x     f32
	y     f32
	z     f32
	color u32
	u     f32
	v     f32
	// u u16   // for compatibility with D3D11
	// v u16   // for compatibility with D3D11
}

fn init_cube_glsl(mut app App) {
	// cube vertex buffer
	// d := u16(32767)     // for compatibility with D3D11, 32767 stand for 1
	d := f32(1.0)
	c := u32(0xFFFFFF_FF) // color RGBA8
	vertices := [
		// Face 0
		Vertex_t{-1.0, -1.0, -1.0, c,  0, 0},
		Vertex_t{ 1.0, -1.0, -1.0, c,  d, 0},
		Vertex_t{ 1.0,  1.0, -1.0, c,  d, d},
		Vertex_t{-1.0,  1.0, -1.0, c,  0, d},
		// Face 1
		Vertex_t{-1.0, -1.0,  1.0, c,  0, 0},
		Vertex_t{ 1.0, -1.0,  1.0, c,  d, 0},
		Vertex_t{ 1.0,  1.0,  1.0, c,  d, d},
		Vertex_t{-1.0,  1.0,  1.0, c,  0, d},
		// Face 2
		Vertex_t{-1.0, -1.0, -1.0, c,  0, 0},
		Vertex_t{-1.0,  1.0, -1.0, c,  d, 0},
		Vertex_t{-1.0,  1.0,  1.0, c,  d, d},
		Vertex_t{-1.0, -1.0,  1.0, c,  0, d},
		// Face 3
		Vertex_t{ 1.0, -1.0, -1.0, c,  0, 0},
		Vertex_t{ 1.0,  1.0, -1.0, c,  d, 0},
		Vertex_t{ 1.0,  1.0,  1.0, c,  d, d},
		Vertex_t{ 1.0, -1.0,  1.0, c,  0, d},
		// Face 4
		Vertex_t{-1.0, -1.0, -1.0, c,  0, 0},
		Vertex_t{-1.0, -1.0,  1.0, c,  d, 0},
		Vertex_t{ 1.0, -1.0,  1.0, c,  d, d},
		Vertex_t{ 1.0, -1.0, -1.0, c,  0, d},
		// Face 5
		Vertex_t{-1.0,  1.0, -1.0, c,  0, 0},
		Vertex_t{-1.0,  1.0,  1.0, c,  d, 0},
		Vertex_t{ 1.0,  1.0,  1.0, c,  d, d},
		Vertex_t{ 1.0,  1.0, -1.0, c,  0, d},
	]

	mut vert_buffer_desc := C.sg_buffer_desc{label: c'cube-vertices'}
	unsafe { C.memset(&vert_buffer_desc, 0, sizeof(vert_buffer_desc)) }

	vert_buffer_desc.size = size_t(vertices.len * int(sizeof(Vertex_t)))
	vert_buffer_desc.data = C.sg_range{
		ptr: vertices.data
		size: size_t(vertices.len * int(sizeof(Vertex_t)))
	}

	vert_buffer_desc.@type = .vertexbuffer
	vbuf := gfx.make_buffer(&vert_buffer_desc)

	// create an index buffer for the cube
	indices := [
			u16(0),	1,	2,  	0, 	2, 	3,
			6, 	5,	4,		7,	6,	4,
			8,	9,	10,		8,	10,	11,
			14,	13,	12,		15,	14,	12,
			16,	17,	18,		16,	18,	19,
			22,	21,	20,		23,	22,	20,
	]

	mut index_buffer_desc := C.sg_buffer_desc{label: c'cube-indices'}
	unsafe {C.memset(&index_buffer_desc, 0, sizeof(index_buffer_desc))}

	index_buffer_desc.size = size_t(indices.len * int(sizeof(u16)))
	index_buffer_desc.data = C.sg_range{
		ptr: indices.data
		size: size_t(indices.len * int(sizeof(u16)))
	}

	index_buffer_desc.@type   = .indexbuffer
	ibuf := gfx.make_buffer(&index_buffer_desc)

	// create shader
	shader := gfx.make_shader(C.rt_shader_desc(C.sg_query_backend()))

	mut pipdesc := C.sg_pipeline_desc{}
	unsafe { C.memset(&pipdesc, 0, sizeof(pipdesc)) }
	pipdesc.layout.buffers[0].stride = int(sizeof(Vertex_t))

	// the constants [C.ATTR_vs_pos, C.ATTR_vs_color0, C.ATTR_vs_texcoord0] are generated by sokol-shdc
	pipdesc.layout.attrs[C.ATTR_vs_pos      ].format = .float3  // x,y,z as f32
	pipdesc.layout.attrs[C.ATTR_vs_color0   ].format = .ubyte4n // color as u32
	pipdesc.layout.attrs[C.ATTR_vs_texcoord0].format = .float2  // u,v as f32
	// pipdesc.layout.attrs[C.ATTR_vs_texcoord0].format  = .short2n  // u,v as u16

	pipdesc.shader = shader
	pipdesc.index_type = .uint16

	pipdesc.depth = C.sg_depth_state{
		write_enabled: true
		compare: gfx.CompareFunc(C.SG_COMPAREFUNC_LESS_EQUAL)
	}
	pipdesc.cull_mode = .back

	pipdesc.label = 'glsl_shader pipeline'.str

	app.cube_bind.vertex_buffers[0] = vbuf
	app.cube_bind.index_buffer = ibuf
	app.cube_bind.fs_images[C.SLOT_tex] = app.texture
	app.cube_pip_glsl = gfx.make_pipeline(&pipdesc)
	println('GLSL init DONE!')
}

[inline]
fn vec4(x f32, y f32, z f32, w f32) m4.Vec4 {
	return m4.Vec4{e:[x, y, z, w]!}
}

fn calc_tr_matrices(w f32, h f32, rx f32, ry f32, in_scale f32) m4.Mat4 {
	proj := m4.perspective(60, w/h, 0.01, 10.0)
	view := m4.look_at(vec4(f32(0.0) ,0 , 6, 0), vec4(f32(0), 0, 0, 0), vec4(f32(0), 1, 0, 0))
	view_proj := view * proj

	rxm := m4.rotate(m4.rad(rx), vec4(f32(1), 0, 0, 0))
	rym := m4.rotate(m4.rad(ry), vec4(f32(0), 1, 0, 0))

	model :=  rym * rxm
	scale_m := m4.scale(vec4(in_scale, in_scale, in_scale, 1))

	res :=  (scale_m * model) * view_proj
	return res
}

fn draw_cube_glsl(app App) {
	if app.init_flag == false {
		return
	}

	ws := gg.window_size_real_pixels()
	ratio := f32(ws.width) / ws.height
	dw := f32(ws.width / 2)
	dh := f32(ws.height / 2)

	// use the following commented lines to rotate the 3d glsl cube
	// rot := [f32(app.mouse_y), f32(app.mouse_x)]
	// calc_tr_matrices(dw, dh, rot[0], rot[1] ,2.3)
	tr_matrix := calc_tr_matrices(dw, dh, 0, 0, 2.3)
	gfx.apply_viewport(0, 0, ws.width, ws.height, true)

	// apply the pipline and bindings
	gfx.apply_pipeline(app.cube_pip_glsl)
	gfx.apply_bindings(app.cube_bind)

	// Uniforms
	// *** vertex shadeer uniforms ***
	// passing the view matrix as uniform
	// res is a 4x4 matrix of f32 thus: 4*16 byte of size
	vs_uniforms_range := C.sg_range{
		ptr: &tr_matrix
		size: size_t(4 * 16)
	}
	gfx.apply_uniforms(C.SG_SHADERSTAGE_VS, C.SLOT_vs_params, &vs_uniforms_range)

	// *** fragment shader uniforms ***
	time_ticks := f32(time.ticks() - app.ticks) / 1000
	mut tmp_fs_params := [
		f32(ws.width),
		ws.height * ratio,           // x,y resolution to pass to FS
		app.mouse_x,                 // mouse x
		ws.height - app.mouse_y * 2, // mouse y scaled
		time_ticks,                  // time as f32
		app.frame_count,             // frame count
		0,
		0 // padding bytes , see "fs_params" struct paddings in rt_glsl.h
	]!
	fs_uniforms_range := C.sg_range{
		ptr: unsafe { &tmp_fs_params }
		size: size_t(sizeof(tmp_fs_params))
	}
	gfx.apply_uniforms(C.SG_SHADERSTAGE_FS, C.SLOT_fs_params, &fs_uniforms_range)

	// 3 vertices for triangle * 2 triangles per face * 6 faces = 36 vertices to draw
	gfx.draw(0, (3 * 2) * 6, 1)
	gfx.end_pass()
	gfx.commit()
}

fn frame(mut app App) {
	ws := gg.window_size_real_pixels()

	// clear
	mut color_action := C.sg_color_attachment_action{
		action: gfx.Action(C.SG_ACTION_CLEAR)
		value: C.sg_color{
			r: 0.0
			g: 0.0
			b: 0.0
			a: 1.0
		}
	}

	mut pass_action := C.sg_pass_action{}
	pass_action.colors[0] = color_action
	gfx.begin_default_pass(&pass_action, ws.width, ws.height)

	// glsl cube
	draw_cube_glsl(app)
	app.frame_count++
}

/******************************************************************************
* Init / Cleanup
******************************************************************************/
fn my_init(mut app App) {
	// set max vertices,
	// for a large number of the same type of object it is better use the instances!!
	desc := sapp.create_desc()
	gfx.setup(&desc)
	sgl_desc := C.sgl_desc_t{
		max_vertices: 50 * 65536
	}
	sgl.setup(&sgl_desc)

	// create chessboard texture 256*256 RGBA
	w := 256
	h := 256
	sz := w * h * 4
	tmp_txt := unsafe { malloc(sz) }
	mut i := 0
	for i < sz {
		unsafe {
			y := (i >> 0x8) >> 5 // 8 cell
			x := (i & 0xFF) >> 5 // 8 cell
			// upper left corner
			if x == 0 && y == 0 {
				tmp_txt[i + 0] = byte(0xFF)
				tmp_txt[i + 1] = byte(0)
				tmp_txt[i + 2] = byte(0)
				tmp_txt[i + 3] = byte(0xFF)
			}
			// low right corner
			else if x == 7 && y == 7 {
				tmp_txt[i + 0] = byte(0)
				tmp_txt[i + 1] = byte(0xFF)
				tmp_txt[i + 2] = byte(0)
				tmp_txt[i + 3] = byte(0xFF)
			} else {
				col := if ((x + y) & 1) == 1 { 0xFF } else { 128 }
				tmp_txt[i + 0] = byte(col)  // red
				tmp_txt[i + 1] = byte(col)  // green
				tmp_txt[i + 2] = byte(col)  // blue
				tmp_txt[i + 3] = byte(0xFF) // alpha
			}
			i += 4
		}
	}
	unsafe {
		app.texture = create_texture(w, h, tmp_txt)
		free(tmp_txt)
	}
	// glsl
	init_cube_glsl(mut app)
	app.init_flag = true
}

fn cleanup(mut app App) {
	gfx.shutdown()
}

/******************************************************************************
* events handling
******************************************************************************/
fn my_event_manager(mut ev gg.Event, mut app App) {
	if ev.typ == .mouse_move {
		app.mouse_x = int(ev.mouse_x)
		app.mouse_y = int(ev.mouse_y)
	}
	if ev.typ == .touches_began || ev.typ == .touches_moved {
		if ev.num_touches > 0 {
			touch_point := ev.touches[0]
			app.mouse_x = int(touch_point.pos_x)
			app.mouse_y = int(touch_point.pos_y)
		}
	}
}

/******************************************************************************
* Main
******************************************************************************/
[console] // is needed for easier diagnostics on windows
fn main() {
	// App init
	mut app := &App{
		gg: 0
	}

	app.gg = gg.new_context(
		width: win_width
		height: win_height
		create_window: true
		window_title: '3D Ray Marching Cube'
		user_data: app
		bg_color: bg_color
		frame_fn: frame
		init_fn: my_init
		cleanup_fn: cleanup
		event_fn: my_event_manager
	)

	app.ticks = time.ticks()
	app.gg.run()
}