1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
|
/**********************************************************************
* path tracing demo
*
* Copyright (c) 2019-2021 Dario Deledda. All rights reserved.
* Use of this source code is governed by an MIT license
* that can be found in the LICENSE file.
*
* This file contains a path tracer example in less of 500 line of codes
* 3 demo scenes included
*
* This code is inspired by:
* - "Realistic Ray Tracing" by Peter Shirley 2000 ISBN-13: 978-1568814612
* - https://www.kevinbeason.com/smallpt/
*
* Known limitations:
* - there are some approximation errors in the calculations
* - to speed-up the code a cos/sin table is used
* - the full precision code is present but commented, can be restored very easily
* - an higher number of samples ( > 60) can block the program on higher resolutions
* without a stack size increase
* - as a recursive program this code depend on the stack size,
* for higher number of samples increase the stack size
* in linux: ulimit -s byte_size_of_the_stack
* example: ulimit -s 16000000
* - No OpenMP support
**********************************************************************/
import os
import math
import rand
import time
import term
const (
inf = 1e+10
eps = 1e-4
f_0 = 0.0
)
//**************************** 3D Vector utility struct *********************
struct Vec {
mut:
x f64 = 0.0
y f64 = 0.0
z f64 = 0.0
}
[inline]
fn (v Vec) + (b Vec) Vec {
return Vec{v.x + b.x, v.y + b.y, v.z + b.z}
}
[inline]
fn (v Vec) - (b Vec) Vec {
return Vec{v.x - b.x, v.y - b.y, v.z - b.z}
}
[inline]
fn (v Vec) * (b Vec) Vec {
return Vec{v.x * b.x, v.y * b.y, v.z * b.z}
}
[inline]
fn (v Vec) dot(b Vec) f64 {
return v.x * b.x + v.y * b.y + v.z * b.z
}
[inline]
fn (v Vec) mult_s(b f64) Vec {
return Vec{v.x * b, v.y * b, v.z * b}
}
[inline]
fn (v Vec) cross(b Vec) Vec {
return Vec{v.y * b.z - v.z * b.y, v.z * b.x - v.x * b.z, v.x * b.y - v.y * b.x}
}
[inline]
fn (v Vec) norm() Vec {
tmp_norm := 1.0 / math.sqrt(v.x * v.x + v.y * v.y + v.z * v.z)
return Vec{v.x * tmp_norm, v.y * tmp_norm, v.z * tmp_norm}
}
//********************************Image**************************************
struct Image {
width int
height int
data &Vec
}
fn new_image(w int, h int) Image {
vecsize := int(sizeof(Vec))
return Image{
width: w
height: h
data: unsafe { &Vec(vcalloc(vecsize * w * h)) }
}
}
// write out a .ppm file
fn (image Image) save_as_ppm(file_name string) {
npixels := image.width * image.height
mut f_out := os.create(file_name) or { panic(err) }
f_out.writeln('P3') or { panic(err) }
f_out.writeln('$image.width $image.height') or { panic(err) }
f_out.writeln('255') or { panic(err) }
for i in 0 .. npixels {
c_r := to_int(unsafe { image.data[i] }.x)
c_g := to_int(unsafe { image.data[i] }.y)
c_b := to_int(unsafe { image.data[i] }.z)
f_out.write_string('$c_r $c_g $c_b ') or { panic(err) }
}
f_out.close()
}
//********************************** Ray ************************************
struct Ray {
o Vec
d Vec
}
// material types, used in radiance()
enum Refl_t {
diff
spec
refr
}
//******************************** Sphere ***********************************
struct Sphere {
rad f64 = 0.0 // radius
p Vec // position
e Vec // emission
c Vec // color
refl Refl_t // reflection type => [diffuse, specular, refractive]
}
fn (sp Sphere) intersect(r Ray) f64 {
op := sp.p - r.o // Solve t^2*d.d + 2*t*(o-p).d + (o-p).(o-p)-R^2 = 0
b := op.dot(r.d)
mut det := b * b - op.dot(op) + sp.rad * sp.rad
if det < 0 {
return 0
}
det = math.sqrt(det)
mut t := b - det
if t > eps {
return t
}
t = b + det
if t > eps {
return t
}
return 0
}
/*********************************** Scenes **********************************
* 0) Cornell Box with 2 spheres
* 1) Sunset
* 2) Psychedelic
* The sphere fileds are: Sphere{radius, position, emission, color, material}
******************************************************************************/
const (
cen = Vec{50, 40.8, -860} // used by scene 1
spheres = [
[/* scene 0 cornnel box */ Sphere{
rad: 1e+5
p: Vec{1e+5 + 1, 40.8, 81.6}
e: Vec{}
c: Vec{.75, .25, .25}
refl: .diff
}, /* Left */ Sphere{
rad: 1e+5
p: Vec{-1e+5 + 99, 40.8, 81.6}
e: Vec{}
c: Vec{.25, .25, .75}
refl: .diff
}, /* Rght */ Sphere{
rad: 1e+5
p: Vec{50, 40.8, 1e+5}
e: Vec{}
c: Vec{.75, .75, .75}
refl: .diff
}, /* Back */ Sphere{
rad: 1e+5
p: Vec{50, 40.8, -1e+5 + 170}
e: Vec{}
c: Vec{}
refl: .diff
}, /* Frnt */ Sphere{
rad: 1e+5
p: Vec{50, 1e+5, 81.6}
e: Vec{}
c: Vec{.75, .75, .75}
refl: .diff
}, /* Botm */ Sphere{
rad: 1e+5
p: Vec{50, -1e+5 + 81.6, 81.6}
e: Vec{}
c: Vec{.75, .75, .75}
refl: .diff
}, /* Top */ Sphere{
rad: 16.5
p: Vec{27, 16.5, 47}
e: Vec{}
c: Vec{1, 1, 1}.mult_s(.999)
refl: .spec
}, /* Mirr */ Sphere{
rad: 16.5
p: Vec{73, 16.5, 78}
e: Vec{}
c: Vec{1, 1, 1}.mult_s(.999)
refl: .refr
}, /* Glas */ Sphere{
rad: 600
p: Vec{50, 681.6 - .27, 81.6}
e: Vec{12, 12, 12}
c: Vec{}
refl: .diff
} /* Lite */],
[/* scene 1 sunset */ Sphere{
rad: 1600
p: Vec{1.0, 0.0, 2.0}.mult_s(3000)
e: Vec{1.0, .9, .8}.mult_s(1.2e+1 * 1.56 * 2)
c: Vec{}
refl: .diff
}, /* sun */ Sphere{
rad: 1560
p: Vec{1, 0, 2}.mult_s(3500)
e: Vec{1.0, .5, .05}.mult_s(4.8e+1 * 1.56 * 2)
c: Vec{}
refl: .diff
}, /* horizon sun2 */ Sphere{
rad: 10000
p: cen + Vec{0, 0, -200}
e: Vec{0.00063842, 0.02001478, 0.28923243}.mult_s(6e-2 * 8)
c: Vec{.7, .7, 1}.mult_s(.25)
refl: .diff
}, /* sky */ Sphere{
rad: 100000
p: Vec{50, -100000, 0}
e: Vec{}
c: Vec{.3, .3, .3}
refl: .diff
}, /* grnd */ Sphere{
rad: 110000
p: Vec{50, -110048.5, 0}
e: Vec{.9, .5, .05}.mult_s(4)
c: Vec{}
refl: .diff
}, /* horizon brightener */ Sphere{
rad: 4e+4
p: Vec{50, -4e+4 - 30, -3000}
e: Vec{}
c: Vec{.2, .2, .2}
refl: .diff
}, /* mountains */ Sphere{
rad: 26.5
p: Vec{22, 26.5, 42}
e: Vec{}
c: Vec{1, 1, 1}.mult_s(.596)
refl: .spec
}, /* white Mirr */ Sphere{
rad: 13
p: Vec{75, 13, 82}
e: Vec{}
c: Vec{.96, .96, .96}.mult_s(.96)
refl: .refr
}, /* Glas */ Sphere{
rad: 22
p: Vec{87, 22, 24}
e: Vec{}
c: Vec{.6, .6, .6}.mult_s(.696)
refl: .refr
} /* Glas2 */],
[/* scene 3 Psychedelic */ Sphere{
rad: 150
p: Vec{50 + 75, 28, 62}
e: Vec{1, 1, 1}.mult_s(0e-3)
c: Vec{1, .9, .8}.mult_s(.93)
refl: .refr
}, Sphere{
rad: 28
p: Vec{50 + 5, -28, 62}
e: Vec{1, 1, 1}.mult_s(1e+1)
c: Vec{1, 1, 1}.mult_s(0)
refl: .diff
}, Sphere{
rad: 300
p: Vec{50, 28, 62}
e: Vec{1, 1, 1}.mult_s(0e-3)
c: Vec{1, 1, 1}.mult_s(.93)
refl: .spec
}],
] // end of scene array
)
//********************************** Utilities ******************************
[inline]
fn clamp(x f64) f64 {
if x < 0 {
return 0
}
if x > 1 {
return 1
}
return x
}
[inline]
fn to_int(x f64) int {
p := math.pow(clamp(x), 1.0 / 2.2)
return int(p * 255.0 + 0.5)
}
fn intersect(r Ray, spheres &Sphere, nspheres int) (bool, f64, int) {
mut d := 0.0
mut t := inf
mut id := 0
for i := nspheres - 1; i >= 0; i-- {
d = unsafe { spheres[i] }.intersect(r)
if d > 0 && d < t {
t = d
id = i
}
}
return (t < inf), t, id
}
// some casual random function, try to avoid the 0
fn rand_f64() f64 {
x := rand.u32() & 0x3FFF_FFFF
return f64(x) / f64(0x3FFF_FFFF)
}
const (
cache_len = 65536 // the 2*pi angle will be splitted in 65536 part
cache_mask = cache_len - 1 // mask to speed-up the module process
)
struct Cache {
mut:
sin_tab [65536]f64
cos_tab [65536]f64
}
fn new_tabs() Cache {
mut c := Cache{}
inv_len := 1.0 / f64(cache_len)
for i in 0 .. cache_len {
x := f64(i) * math.pi * 2.0 * inv_len
c.sin_tab[i] = math.sin(x)
c.cos_tab[i] = math.cos(x)
}
return c
}
//************ Cache for sin/cos speed-up table and scene selector **********
const (
tabs = new_tabs()
)
//****************** main function for the radiance calculation *************
fn radiance(r Ray, depthi int, scene_id int) Vec {
if depthi > 1024 {
eprintln('depthi: $depthi')
eprintln('')
return Vec{}
}
mut depth := depthi // actual depth in the reflection tree
mut t := 0.0 // distance to intersection
mut id := 0 // id of intersected object
mut res := false // result of intersect
v_1 := 1.0
// v_2 := f64(2.0)
scene := spheres[scene_id]
// res, t, id = intersect(r, id, tb.scene)
res, t, id = intersect(r, scene.data, scene.len)
if !res {
return Vec{}
}
// if miss, return black
obj := scene[id] // the hit object
x := r.o + r.d.mult_s(t)
n := (x - obj.p).norm()
nl := if n.dot(r.d) < 0.0 { n } else { n.mult_s(-1) }
mut f := obj.c
// max reflection
mut p := f.z
if f.x > f.y && f.x > f.z {
p = f.x
} else {
if f.y > f.z {
p = f.y
}
}
depth++
if depth > 5 {
if rand_f64() < p {
f = f.mult_s(f64(1.0) / p)
} else {
return obj.e // R.R.
}
}
if obj.refl == .diff { // Ideal DIFFUSE reflection
// **Full Precision**
// r1 := f64(2.0 * math.pi) * rand_f64()
// tabbed speed-up
r1 := rand.u32() & cache_mask
r2 := rand_f64()
r2s := math.sqrt(r2)
w := nl
mut u := if math.abs(w.x) > f64(0.1) { Vec{0, 1, 0} } else { Vec{1, 0, 0} }
u = u.cross(w).norm()
v := w.cross(u)
// **Full Precision**
// d := (u.mult_s(math.cos(r1) * r2s) + v.mult_s(math.sin(r1) * r2s) + w.mult_s(1.0 - r2)).norm()
// tabbed speed-up
d := (u.mult_s(tabs.cos_tab[r1] * r2s) + v.mult_s(tabs.sin_tab[r1] * r2s) +
w.mult_s(math.sqrt(f64(1.0) - r2))).norm()
return obj.e + f * radiance(Ray{x, d}, depth, scene_id)
} else {
if obj.refl == .spec { // Ideal SPECULAR reflection
return obj.e + f * radiance(Ray{x, r.d - n.mult_s(2.0 * n.dot(r.d))}, depth, scene_id)
}
}
refl_ray := Ray{x, r.d - n.mult_s(2.0 * n.dot(r.d))} // Ideal dielectric REFRACTION
into := n.dot(nl) > 0 // Ray from outside going in?
nc := f64(1.0)
nt := f64(1.5)
nnt := if into { nc / nt } else { nt / nc }
ddn := r.d.dot(nl)
cos2t := v_1 - nnt * nnt * (v_1 - ddn * ddn)
if cos2t < 0.0 { // Total internal reflection
return obj.e + f * radiance(refl_ray, depth, scene_id)
}
dirc := if into { f64(1) } else { f64(-1) }
tdir := (r.d.mult_s(nnt) - n.mult_s(dirc * (ddn * nnt + math.sqrt(cos2t)))).norm()
a := nt - nc
b := nt + nc
r0 := a * a / (b * b)
c := if into { v_1 + ddn } else { v_1 - tdir.dot(n) }
re := r0 + (v_1 - r0) * c * c * c * c * c
tr := v_1 - re
pp := f64(.25) + f64(.5) * re
rp := re / pp
tp := tr / (v_1 - pp)
mut tmp := Vec{}
if depth > 2 {
// Russian roulette
tmp = if rand_f64() < pp {
radiance(refl_ray, depth, scene_id).mult_s(rp)
} else {
radiance(Ray{x, tdir}, depth, scene_id).mult_s(tp)
}
} else {
tmp = (radiance(refl_ray, depth, scene_id).mult_s(re)) +
(radiance(Ray{x, tdir}, depth, scene_id).mult_s(tr))
}
return obj.e + (f * tmp)
}
//*********************** beam scan routine *********************************
fn ray_trace(w int, h int, samps int, file_name string, scene_id int) Image {
image := new_image(w, h)
// inverse costants
w1 := f64(1.0 / f64(w))
h1 := f64(1.0 / f64(h))
samps1 := f64(1.0 / f64(samps))
cam := Ray{Vec{50, 52, 295.6}, Vec{0, -0.042612, -1}.norm()} // cam position, direction
cx := Vec{f64(w) * 0.5135 / f64(h), 0, 0}
cy := cx.cross(cam.d).norm().mult_s(0.5135)
mut r := Vec{}
// speed-up constants
v_1 := f64(1.0)
v_2 := f64(2.0)
// OpenMP injection point! #pragma omp parallel for schedule(dynamic, 1) shared(c)
for y := 0; y < h; y++ {
term.cursor_up(1)
eprintln('Rendering (${samps * 4} spp) ${(100.0 * f64(y)) / (f64(h) - 1.0):5.2f}%')
for x in 0 .. w {
i := (h - y - 1) * w + x
mut ivec := unsafe { &image.data[i] }
// we use sx and sy to perform a square subsampling of 4 samples
for sy := 0; sy < 2; sy++ {
for sx := 0; sx < 2; sx++ {
r = Vec{0, 0, 0}
for _ in 0 .. samps {
r1 := v_2 * rand_f64()
dx := if r1 < v_1 { math.sqrt(r1) - v_1 } else { v_1 - math.sqrt(v_2 - r1) }
r2 := v_2 * rand_f64()
dy := if r2 < v_1 { math.sqrt(r2) - v_1 } else { v_1 - math.sqrt(v_2 - r2) }
d := cx.mult_s(((f64(sx) + 0.5 + dx) * 0.5 + f64(x)) * w1 - .5) +
cy.mult_s(((f64(sy) + 0.5 + dy) * 0.5 + f64(y)) * h1 - .5) + cam.d
r = r + radiance(Ray{cam.o +
d.mult_s(140.0), d.norm()}, 0, scene_id).mult_s(samps1)
}
tmp_vec := Vec{clamp(r.x), clamp(r.y), clamp(r.z)}.mult_s(.25)
(*ivec) = *ivec + tmp_vec
}
}
}
}
return image
}
fn main() {
if os.args.len > 6 {
eprintln('Usage:\n path_tracing [samples] [image.ppm] [scene_n] [width] [height]')
exit(1)
}
mut width := 320 // width of the rendering in pixels
mut height := 200 // height of the rendering in pixels
mut samples := 4 // number of samples per pixel, increase for better quality
mut scene_id := 0 // scene to render [0 cornell box,1 sunset,2 psyco]
mut file_name := 'image.ppm' // name of the output file in .ppm format
if os.args.len >= 2 {
samples = os.args[1].int() / 4
}
if os.args.len >= 3 {
file_name = os.args[2]
}
if os.args.len >= 4 {
scene_id = os.args[3].int()
}
if os.args.len >= 5 {
width = os.args[4].int()
}
if os.args.len == 6 {
height = os.args[5].int()
}
// change the seed for a different result
rand.seed([u32(2020), 0])
t1 := time.ticks()
eprintln('Path tracing samples: $samples, file_name: $file_name, scene_id: $scene_id, width: $width, height: $height')
eprintln('')
image := ray_trace(width, height, samples, file_name, scene_id)
t2 := time.ticks()
eprintln('Rendering finished. Took: ${(t2 - t1):5}ms')
image.save_as_ppm(file_name)
t3 := time.ticks()
eprintln('Image saved as [$file_name]. Took: ${(t3 - t2):5}ms')
}
|