1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
|
import os
import time
import sokol.audio
struct Player {
mut:
samples []f32
pos int
finished bool
}
fn main() {
if os.args.len < 2 {
eprintln('Usage: play_wav file1.wav file2.wav ...')
play_sounds([os.resource_abs_path('uhoh.wav')]) ?
exit(1)
}
play_sounds(os.args[1..]) ?
}
fn play_sounds(files []string) ? {
mut player := Player{}
player.init()
for f in files {
if !os.exists(f) || os.is_dir(f) {
eprintln('skipping "$f" (does not exist)')
continue
}
fext := os.file_ext(f).to_lower()
if fext != '.wav' {
eprintln('skipping "$f" (not a .wav file)')
continue
}
player.play_wav_file(f) ?
}
player.stop()
}
//
fn audio_player_callback(buffer &f32, num_frames int, num_channels int, mut p Player) {
if p.finished {
return
}
ntotal := num_channels * num_frames
nremaining := p.samples.len - p.pos
nsamples := if nremaining < ntotal { nremaining } else { ntotal }
if nsamples <= 0 {
p.finished = true
return
}
unsafe { C.memcpy(buffer, &p.samples[p.pos], nsamples * int(sizeof(f32))) }
p.pos += nsamples
}
fn (mut p Player) init() {
audio.setup(
num_channels: 2
stream_userdata_cb: audio_player_callback
user_data: p
)
}
fn (mut p Player) stop() {
audio.shutdown()
p.free()
}
fn (mut p Player) play_wav_file(fpath string) ? {
println('> play_wav_file: $fpath')
samples := read_wav_file_samples(fpath) ?
p.finished = true
p.samples << samples
p.finished = false
for !p.finished {
time.sleep(16 * time.millisecond)
}
p.free()
}
fn (mut p Player) free() {
p.finished = false
p.samples = []f32{}
p.pos = 0
}
// The read_wav_file_samples function below is based on the following sources:
// http://www-mmsp.ece.mcgill.ca/Documents/AudioFormats/WAVE/WAVE.html
// http://www.lightlink.com/tjweber/StripWav/WAVE.html
// http://www.lightlink.com/tjweber/StripWav/Canon.html
// https://tools.ietf.org/html/draft-ema-vpim-wav-00
// NB: > The chunks MAY appear in any order except that the Format chunk
// > MUST be placed before the Sound data chunk (but not necessarily
// > contiguous to the Sound data chunk).
struct RIFFHeader {
riff [4]byte
file_size u32
form_type [4]byte
}
struct RIFFChunkHeader {
chunk_type [4]byte
chunk_size u32
chunk_data voidptr
}
struct RIFFFormat {
format_tag u16 // PCM = 1; Values other than 1 indicate some form of compression.
nchannels u16 // Nc ; 1 = mono ; 2 = stereo
sample_rate u32 // F
avg_bytes_per_second u32 // F * M*Nc
nblock_align u16 // M*Nc
bits_per_sample u16 // 8 * M
cbsize u16 // Size of the extension: 22
valid_bits_per_sample u16 // at most 8*M
channel_mask u32 // Speaker position mask
sub_format [16]byte // GUID
}
fn read_wav_file_samples(fpath string) ?[]f32 {
mut res := []f32{}
// eprintln('> read_wav_file_samples: $fpath -------------------------------------------------')
mut bytes := os.read_bytes(fpath) ?
mut pbytes := &byte(bytes.data)
mut offset := u32(0)
rh := unsafe { &RIFFHeader(pbytes) }
// eprintln('rh: $rh')
if rh.riff != [byte(`R`), `I`, `F`, `F`]! {
return error('WAV should start with `RIFF`')
}
if rh.form_type != [byte(`W`), `A`, `V`, `E`]! {
return error('WAV should have `WAVE` form type')
}
if rh.file_size + 8 != bytes.len {
return error('WAV should have valid lenght')
}
offset += sizeof(RIFFHeader)
mut rf := &RIFFFormat(0)
for {
if offset >= bytes.len {
break
}
//
ch := unsafe { &RIFFChunkHeader(pbytes + offset) }
offset += 8 + ch.chunk_size
// eprintln('ch: $ch')
// eprintln('p: $pbytes | offset: $offset | bytes.len: $bytes.len')
// ////////
if ch.chunk_type == [byte(`L`), `I`, `S`, `T`]! {
continue
}
//
if ch.chunk_type == [byte(`i`), `d`, `3`, ` `]! {
continue
}
//
if ch.chunk_type == [byte(`f`), `m`, `t`, ` `]! {
// eprintln('`fmt ` chunk')
rf = unsafe { &RIFFFormat(&ch.chunk_data) }
// eprintln('fmt riff format: $rf')
if rf.format_tag != 1 {
return error('only PCM encoded WAVs are supported')
}
if rf.nchannels < 1 || rf.nchannels > 2 {
return error('only mono or stereo WAVs are supported')
}
if rf.bits_per_sample !in [u16(8), 16] {
return error('only 8 or 16 bits per sample WAVs are supported')
}
continue
}
//
if ch.chunk_type == [byte(`d`), `a`, `t`, `a`]! {
if rf == 0 {
return error('`data` chunk should be after `fmt ` chunk')
}
// eprintln('`fmt ` chunk: $rf\n`data` chunk: $ch')
mut doffset := 0
mut dp := unsafe { &byte(&ch.chunk_data) }
for doffset < ch.chunk_size {
for c := 0; c < rf.nchannels; c++ {
mut x := f32(0.0)
mut step := 0
ppos := unsafe { dp + doffset }
if rf.bits_per_sample == 8 {
d8 := unsafe { &byte(ppos) }
x = (f32(*d8) - 128) / 128.0
step = 1
doffset++
}
if rf.bits_per_sample == 16 {
d16 := unsafe { &i16(ppos) }
x = f32(*d16) / 32768.0
step = 2
}
doffset += step
if doffset < ch.chunk_size {
res << x
if rf.nchannels == 1 {
// Duplicating single channel mono sounds,
// produces a stereo sound, simplifying further processing:
res << x
}
}
}
}
}
}
return res
}
|