aboutsummaryrefslogtreecommitdiff
path: root/v_windows/v/old/vlib/math/bits/bits.v
blob: a3d222017d7107b24519ab490e81eb6cfb853308 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
// Copyright (c) 2019-2021 Alexander Medvednikov. All rights reserved.
// Use of this source code is governed by an MIT license
// that can be found in the LICENSE file.
module bits

const (
	// See http://supertech.csail.mit.edu/papers/debruijn.pdf
	de_bruijn32    = u32(0x077CB531)
	de_bruijn32tab = [byte(0), 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8, 31, 27, 13,
		23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9]
	de_bruijn64    = u64(0x03f79d71b4ca8b09)
	de_bruijn64tab = [byte(0), 1, 56, 2, 57, 49, 28, 3, 61, 58, 42, 50, 38, 29, 17, 4, 62, 47,
		59, 36, 45, 43, 51, 22, 53, 39, 33, 30, 24, 18, 12, 5, 63, 55, 48, 27, 60, 41, 37, 16,
		46, 35, 44, 21, 52, 32, 23, 11, 54, 26, 40, 15, 34, 20, 31, 10, 25, 14, 19, 9, 13, 8, 7,
		6,
	]
)

const (
	m0 = u64(0x5555555555555555) // 01010101 ...
	m1 = u64(0x3333333333333333) // 00110011 ...
	m2 = u64(0x0f0f0f0f0f0f0f0f) // 00001111 ...
	m3 = u64(0x00ff00ff00ff00ff) // etc.
	m4 = u64(0x0000ffff0000ffff)
)

const (
	// save importing math mod just for these
	max_u32 = u32(4294967295)
	max_u64 = u64(18446744073709551615)
)

// --- LeadingZeros ---
// leading_zeros_8 returns the number of leading zero bits in x; the result is 8 for x == 0.
pub fn leading_zeros_8(x byte) int {
	return 8 - len_8(x)
}

// leading_zeros_16 returns the number of leading zero bits in x; the result is 16 for x == 0.
pub fn leading_zeros_16(x u16) int {
	return 16 - len_16(x)
}

// leading_zeros_32 returns the number of leading zero bits in x; the result is 32 for x == 0.
pub fn leading_zeros_32(x u32) int {
	return 32 - len_32(x)
}

// leading_zeros_64 returns the number of leading zero bits in x; the result is 64 for x == 0.
pub fn leading_zeros_64(x u64) int {
	return 64 - len_64(x)
}

// --- TrailingZeros ---
// trailing_zeros_8 returns the number of trailing zero bits in x; the result is 8 for x == 0.
pub fn trailing_zeros_8(x byte) int {
	return int(ntz_8_tab[x])
}

// trailing_zeros_16 returns the number of trailing zero bits in x; the result is 16 for x == 0.
pub fn trailing_zeros_16(x u16) int {
	if x == 0 {
		return 16
	}
	// see comment in trailing_zeros_64
	return int(bits.de_bruijn32tab[u32(x & -x) * bits.de_bruijn32 >> (32 - 5)])
}

// trailing_zeros_32 returns the number of trailing zero bits in x; the result is 32 for x == 0.
pub fn trailing_zeros_32(x u32) int {
	if x == 0 {
		return 32
	}
	// see comment in trailing_zeros_64
	return int(bits.de_bruijn32tab[(x & -x) * bits.de_bruijn32 >> (32 - 5)])
}

// trailing_zeros_64 returns the number of trailing zero bits in x; the result is 64 for x == 0.
pub fn trailing_zeros_64(x u64) int {
	if x == 0 {
		return 64
	}
	// If popcount is fast, replace code below with return popcount(^x & (x - 1)).
	//
	// x & -x leaves only the right-most bit set in the word. Let k be the
	// index of that bit. Since only a single bit is set, the value is two
	// to the power of k. Multiplying by a power of two is equivalent to
	// left shifting, in this case by k bits. The de Bruijn (64 bit) constant
	// is such that all six bit, consecutive substrings are distinct.
	// Therefore, if we have a left shifted version of this constant we can
	// find by how many bits it was shifted by looking at which six bit
	// substring ended up at the top of the word.
	// (Knuth, volume 4, section 7.3.1)
	return int(bits.de_bruijn64tab[(x & -x) * bits.de_bruijn64 >> (64 - 6)])
}

// --- OnesCount ---
// ones_count_8 returns the number of one bits ("population count") in x.
pub fn ones_count_8(x byte) int {
	return int(pop_8_tab[x])
}

// ones_count_16 returns the number of one bits ("population count") in x.
pub fn ones_count_16(x u16) int {
	return int(pop_8_tab[x >> 8] + pop_8_tab[x & u16(0xff)])
}

// ones_count_32 returns the number of one bits ("population count") in x.
pub fn ones_count_32(x u32) int {
	return int(pop_8_tab[x >> 24] + pop_8_tab[x >> 16 & 0xff] + pop_8_tab[x >> 8 & 0xff] +
		pop_8_tab[x & u32(0xff)])
}

// ones_count_64 returns the number of one bits ("population count") in x.
pub fn ones_count_64(x u64) int {
	// Implementation: Parallel summing of adjacent bits.
	// See "Hacker's Delight", Chap. 5: Counting Bits.
	// The following pattern shows the general approach:
	//
	// x = x>>1&(m0&m) + x&(m0&m)
	// x = x>>2&(m1&m) + x&(m1&m)
	// x = x>>4&(m2&m) + x&(m2&m)
	// x = x>>8&(m3&m) + x&(m3&m)
	// x = x>>16&(m4&m) + x&(m4&m)
	// x = x>>32&(m5&m) + x&(m5&m)
	// return int(x)
	//
	// Masking (& operations) can be left away when there's no
	// danger that a field's sum will carry over into the next
	// field: Since the result cannot be > 64, 8 bits is enough
	// and we can ignore the masks for the shifts by 8 and up.
	// Per "Hacker's Delight", the first line can be simplified
	// more, but it saves at best one instruction, so we leave
	// it alone for clarity.
	mut y := (x >> u64(1) & (bits.m0 & bits.max_u64)) + (x & (bits.m0 & bits.max_u64))
	y = (y >> u64(2) & (bits.m1 & bits.max_u64)) + (y & (bits.m1 & bits.max_u64))
	y = ((y >> 4) + y) & (bits.m2 & bits.max_u64)
	y += y >> 8
	y += y >> 16
	y += y >> 32
	return int(y) & ((1 << 7) - 1)
}

// --- RotateLeft ---
// rotate_left_8 returns the value of x rotated left by (k mod 8) bits.
// To rotate x right by k bits, call rotate_left_8(x, -k).
//
// This function's execution time does not depend on the inputs.
[inline]
pub fn rotate_left_8(x byte, k int) byte {
	n := byte(8)
	s := byte(k) & (n - byte(1))
	return ((x << s) | (x >> (n - s)))
}

// rotate_left_16 returns the value of x rotated left by (k mod 16) bits.
// To rotate x right by k bits, call rotate_left_16(x, -k).
//
// This function's execution time does not depend on the inputs.
[inline]
pub fn rotate_left_16(x u16, k int) u16 {
	n := u16(16)
	s := u16(k) & (n - u16(1))
	return ((x << s) | (x >> (n - s)))
}

// rotate_left_32 returns the value of x rotated left by (k mod 32) bits.
// To rotate x right by k bits, call rotate_left_32(x, -k).
//
// This function's execution time does not depend on the inputs.
[inline]
pub fn rotate_left_32(x u32, k int) u32 {
	n := u32(32)
	s := u32(k) & (n - u32(1))
	return ((x << s) | (x >> (n - s)))
}

// rotate_left_64 returns the value of x rotated left by (k mod 64) bits.
// To rotate x right by k bits, call rotate_left_64(x, -k).
//
// This function's execution time does not depend on the inputs.
[inline]
pub fn rotate_left_64(x u64, k int) u64 {
	n := u64(64)
	s := u64(k) & (n - u64(1))
	return ((x << s) | (x >> (n - s)))
}

// --- Reverse ---
// reverse_8 returns the value of x with its bits in reversed order.
[inline]
pub fn reverse_8(x byte) byte {
	return rev_8_tab[x]
}

// reverse_16 returns the value of x with its bits in reversed order.
[inline]
pub fn reverse_16(x u16) u16 {
	return u16(rev_8_tab[x >> 8]) | (u16(rev_8_tab[x & u16(0xff)]) << 8)
}

// reverse_32 returns the value of x with its bits in reversed order.
[inline]
pub fn reverse_32(x u32) u32 {
	mut y := ((x >> u32(1) & (bits.m0 & bits.max_u32)) | ((x & (bits.m0 & bits.max_u32)) << 1))
	y = ((y >> u32(2) & (bits.m1 & bits.max_u32)) | ((y & (bits.m1 & bits.max_u32)) << u32(2)))
	y = ((y >> u32(4) & (bits.m2 & bits.max_u32)) | ((y & (bits.m2 & bits.max_u32)) << u32(4)))
	return reverse_bytes_32(u32(y))
}

// reverse_64 returns the value of x with its bits in reversed order.
[inline]
pub fn reverse_64(x u64) u64 {
	mut y := ((x >> u64(1) & (bits.m0 & bits.max_u64)) | ((x & (bits.m0 & bits.max_u64)) << 1))
	y = ((y >> u64(2) & (bits.m1 & bits.max_u64)) | ((y & (bits.m1 & bits.max_u64)) << 2))
	y = ((y >> u64(4) & (bits.m2 & bits.max_u64)) | ((y & (bits.m2 & bits.max_u64)) << 4))
	return reverse_bytes_64(y)
}

// --- ReverseBytes ---
// reverse_bytes_16 returns the value of x with its bytes in reversed order.
//
// This function's execution time does not depend on the inputs.
[inline]
pub fn reverse_bytes_16(x u16) u16 {
	return (x >> 8) | (x << 8)
}

// reverse_bytes_32 returns the value of x with its bytes in reversed order.
//
// This function's execution time does not depend on the inputs.
[inline]
pub fn reverse_bytes_32(x u32) u32 {
	y := ((x >> u32(8) & (bits.m3 & bits.max_u32)) | ((x & (bits.m3 & bits.max_u32)) << u32(8)))
	return u32((y >> 16) | (y << 16))
}

// reverse_bytes_64 returns the value of x with its bytes in reversed order.
//
// This function's execution time does not depend on the inputs.
[inline]
pub fn reverse_bytes_64(x u64) u64 {
	mut y := ((x >> u64(8) & (bits.m3 & bits.max_u64)) | ((x & (bits.m3 & bits.max_u64)) << u64(8)))
	y = ((y >> u64(16) & (bits.m4 & bits.max_u64)) | ((y & (bits.m4 & bits.max_u64)) << u64(16)))
	return (y >> 32) | (y << 32)
}

// --- Len ---
// len_8 returns the minimum number of bits required to represent x; the result is 0 for x == 0.
pub fn len_8(x byte) int {
	return int(len_8_tab[x])
}

// len_16 returns the minimum number of bits required to represent x; the result is 0 for x == 0.
pub fn len_16(x u16) int {
	mut y := x
	mut n := 0
	if y >= 1 << 8 {
		y >>= 8
		n = 8
	}
	return n + int(len_8_tab[y])
}

// len_32 returns the minimum number of bits required to represent x; the result is 0 for x == 0.
pub fn len_32(x u32) int {
	mut y := x
	mut n := 0
	if y >= (1 << 16) {
		y >>= 16
		n = 16
	}
	if y >= (1 << 8) {
		y >>= 8
		n += 8
	}
	return n + int(len_8_tab[y])
}

// len_64 returns the minimum number of bits required to represent x; the result is 0 for x == 0.
pub fn len_64(x u64) int {
	mut y := x
	mut n := 0
	if y >= u64(1) << u64(32) {
		y >>= 32
		n = 32
	}
	if y >= u64(1) << u64(16) {
		y >>= 16
		n += 16
	}
	if y >= u64(1) << u64(8) {
		y >>= 8
		n += 8
	}
	return n + int(len_8_tab[y])
}

// --- Add with carry ---
// Add returns the sum with carry of x, y and carry: sum = x + y + carry.
// The carry input must be 0 or 1; otherwise the behavior is undefined.
// The carryOut output is guaranteed to be 0 or 1.
//
// add_32 returns the sum with carry of x, y and carry: sum = x + y + carry.
// The carry input must be 0 or 1; otherwise the behavior is undefined.
// The carryOut output is guaranteed to be 0 or 1.
//
// This function's execution time does not depend on the inputs.
pub fn add_32(x u32, y u32, carry u32) (u32, u32) {
	sum64 := u64(x) + u64(y) + u64(carry)
	sum := u32(sum64)
	carry_out := u32(sum64 >> 32)
	return sum, carry_out
}

// add_64 returns the sum with carry of x, y and carry: sum = x + y + carry.
// The carry input must be 0 or 1; otherwise the behavior is undefined.
// The carryOut output is guaranteed to be 0 or 1.
//
// This function's execution time does not depend on the inputs.
pub fn add_64(x u64, y u64, carry u64) (u64, u64) {
	sum := x + y + carry
	// The sum will overflow if both top bits are set (x & y) or if one of them
	// is (x | y), and a carry from the lower place happened. If such a carry
	// happens, the top bit will be 1 + 0 + 1 = 0 (&^ sum).
	carry_out := ((x & y) | ((x | y) & ~sum)) >> 63
	return sum, carry_out
}

// --- Subtract with borrow ---
// Sub returns the difference of x, y and borrow: diff = x - y - borrow.
// The borrow input must be 0 or 1; otherwise the behavior is undefined.
// The borrowOut output is guaranteed to be 0 or 1.
//
// sub_32 returns the difference of x, y and borrow, diff = x - y - borrow.
// The borrow input must be 0 or 1; otherwise the behavior is undefined.
// The borrowOut output is guaranteed to be 0 or 1.
//
// This function's execution time does not depend on the inputs.
pub fn sub_32(x u32, y u32, borrow u32) (u32, u32) {
	diff := x - y - borrow
	// The difference will underflow if the top bit of x is not set and the top
	// bit of y is set (^x & y) or if they are the same (^(x ^ y)) and a borrow
	// from the lower place happens. If that borrow happens, the result will be
	// 1 - 1 - 1 = 0 - 0 - 1 = 1 (& diff).
	borrow_out := ((~x & y) | (~(x ^ y) & diff)) >> 31
	return diff, borrow_out
}

// sub_64 returns the difference of x, y and borrow: diff = x - y - borrow.
// The borrow input must be 0 or 1; otherwise the behavior is undefined.
// The borrowOut output is guaranteed to be 0 or 1.
//
// This function's execution time does not depend on the inputs.
pub fn sub_64(x u64, y u64, borrow u64) (u64, u64) {
	diff := x - y - borrow
	// See Sub32 for the bit logic.
	borrow_out := ((~x & y) | (~(x ^ y) & diff)) >> 63
	return diff, borrow_out
}

// --- Full-width multiply ---
const (
	two32          = u64(0x100000000)
	mask32         = two32 - 1
	overflow_error = 'Overflow Error'
	divide_error   = 'Divide Error'
)

// mul_32 returns the 64-bit product of x and y: (hi, lo) = x * y
// with the product bits' upper half returned in hi and the lower
// half returned in lo.
//
// This function's execution time does not depend on the inputs.
pub fn mul_32(x u32, y u32) (u32, u32) {
	tmp := u64(x) * u64(y)
	hi := u32(tmp >> 32)
	lo := u32(tmp)
	return hi, lo
}

// mul_64 returns the 128-bit product of x and y: (hi, lo) = x * y
// with the product bits' upper half returned in hi and the lower
// half returned in lo.
//
// This function's execution time does not depend on the inputs.
pub fn mul_64(x u64, y u64) (u64, u64) {
	x0 := x & bits.mask32
	x1 := x >> 32
	y0 := y & bits.mask32
	y1 := y >> 32
	w0 := x0 * y0
	t := x1 * y0 + (w0 >> 32)
	mut w1 := t & bits.mask32
	w2 := t >> 32
	w1 += x0 * y1
	hi := x1 * y1 + w2 + (w1 >> 32)
	lo := x * y
	return hi, lo
}

// --- Full-width divide ---
// div_32 returns the quotient and remainder of (hi, lo) divided by y:
// quo = (hi, lo)/y, rem = (hi, lo)%y with the dividend bits' upper
// half in parameter hi and the lower half in parameter lo.
// div_32 panics for y == 0 (division by zero) or y <= hi (quotient overflow).
pub fn div_32(hi u32, lo u32, y u32) (u32, u32) {
	if y != 0 && y <= hi {
		panic(bits.overflow_error)
	}
	z := (u64(hi) << 32) | u64(lo)
	quo := u32(z / u64(y))
	rem := u32(z % u64(y))
	return quo, rem
}

// div_64 returns the quotient and remainder of (hi, lo) divided by y:
// quo = (hi, lo)/y, rem = (hi, lo)%y with the dividend bits' upper
// half in parameter hi and the lower half in parameter lo.
// div_64 panics for y == 0 (division by zero) or y <= hi (quotient overflow).
pub fn div_64(hi u64, lo u64, y1 u64) (u64, u64) {
	mut y := y1
	if y == 0 {
		panic(bits.overflow_error)
	}
	if y <= hi {
		panic(bits.overflow_error)
	}
	s := u32(leading_zeros_64(y))
	y <<= s
	yn1 := y >> 32
	yn0 := y & bits.mask32
	un32 := (hi << s) | (lo >> (64 - s))
	un10 := lo << s
	un1 := un10 >> 32
	un0 := un10 & bits.mask32
	mut q1 := un32 / yn1
	mut rhat := un32 - q1 * yn1
	for q1 >= bits.two32 || q1 * yn0 > bits.two32 * rhat + un1 {
		q1--
		rhat += yn1
		if rhat >= bits.two32 {
			break
		}
	}
	un21 := un32 * bits.two32 + un1 - q1 * y
	mut q0 := un21 / yn1
	rhat = un21 - q0 * yn1
	for q0 >= bits.two32 || q0 * yn0 > bits.two32 * rhat + un0 {
		q0--
		rhat += yn1
		if rhat >= bits.two32 {
			break
		}
	}
	return q1 * bits.two32 + q0, (un21 * bits.two32 + un0 - q0 * y) >> s
}

// rem_32 returns the remainder of (hi, lo) divided by y. Rem32 panics
// for y == 0 (division by zero) but, unlike Div32, it doesn't panic
// on a quotient overflow.
pub fn rem_32(hi u32, lo u32, y u32) u32 {
	return u32(((u64(hi) << 32) | u64(lo)) % u64(y))
}

// rem_64 returns the remainder of (hi, lo) divided by y. Rem64 panics
// for y == 0 (division by zero) but, unlike div_64, it doesn't panic
// on a quotient overflow.
pub fn rem_64(hi u64, lo u64, y u64) u64 {
	// We scale down hi so that hi < y, then use div_64 to compute the
	// rem with the guarantee that it won't panic on quotient overflow.
	// Given that
	// hi ≡ hi%y    (mod y)
	// we have
	// hi<<64 + lo ≡ (hi%y)<<64 + lo    (mod y)
	_, rem := div_64(hi % y, lo, y)
	return rem
}