aboutsummaryrefslogtreecommitdiff
path: root/v_windows/v/old/vlib/math/math.c.v
blob: 689e648691f61f8825ec7d509d8e52337851f0ec (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
// Copyright (c) 2019-2021 Alexander Medvednikov. All rights reserved.
// Use of this source code is governed by an MIT license
// that can be found in the LICENSE file.
module math

#include <math.h>

$if windows {
	$if tinyc {
		#flag @VEXEROOT/thirdparty/tcc/lib/openlibm.o
	}
} $else {
	#flag -lm
}

fn C.acos(x f64) f64

fn C.asin(x f64) f64

fn C.atan(x f64) f64

fn C.atan2(y f64, x f64) f64

fn C.cbrt(x f64) f64

fn C.ceil(x f64) f64

fn C.cos(x f64) f64

fn C.cosf(x f32) f32

fn C.cosh(x f64) f64

fn C.erf(x f64) f64

fn C.erfc(x f64) f64

fn C.exp(x f64) f64

fn C.exp2(x f64) f64

fn C.fabs(x f64) f64

fn C.floor(x f64) f64

fn C.fmod(x f64, y f64) f64

fn C.hypot(x f64, y f64) f64

fn C.log(x f64) f64

fn C.log2(x f64) f64

fn C.log10(x f64) f64

fn C.lgamma(x f64) f64

fn C.pow(x f64, y f64) f64

fn C.powf(x f32, y f32) f32

fn C.round(x f64) f64

fn C.sin(x f64) f64

fn C.sinf(x f32) f32

fn C.sinh(x f64) f64

fn C.sqrt(x f64) f64

fn C.sqrtf(x f32) f32

fn C.tgamma(x f64) f64

fn C.tan(x f64) f64

fn C.tanf(x f32) f32

fn C.tanh(x f64) f64

fn C.trunc(x f64) f64

// NOTE
// When adding a new function, please make sure it's in the right place.
// All functions are sorted alphabetically.
// Returns the absolute value.
[inline]
pub fn abs(a f64) f64 {
	return C.fabs(a)
}

// acos calculates inverse cosine (arccosine).
[inline]
pub fn acos(a f64) f64 {
	return C.acos(a)
}

// asin calculates inverse sine (arcsine).
[inline]
pub fn asin(a f64) f64 {
	return C.asin(a)
}

// atan calculates inverse tangent (arctangent).
[inline]
pub fn atan(a f64) f64 {
	return C.atan(a)
}

// atan2 calculates inverse tangent with two arguments, returns the angle between the X axis and the point.
[inline]
pub fn atan2(a f64, b f64) f64 {
	return C.atan2(a, b)
}

// cbrt calculates cubic root.
[inline]
pub fn cbrt(a f64) f64 {
	return C.cbrt(a)
}

// ceil returns the nearest f64 greater or equal to the provided value.
[inline]
pub fn ceil(a f64) f64 {
	return C.ceil(a)
}

// cos calculates cosine.
[inline]
pub fn cos(a f64) f64 {
	return C.cos(a)
}

// cosf calculates cosine. (float32)
[inline]
pub fn cosf(a f32) f32 {
	return C.cosf(a)
}

// cosh calculates hyperbolic cosine.
[inline]
pub fn cosh(a f64) f64 {
	return C.cosh(a)
}

// exp calculates exponent of the number (math.pow(math.E, a)).
[inline]
pub fn exp(a f64) f64 {
	return C.exp(a)
}

// erf computes the error function value
[inline]
pub fn erf(a f64) f64 {
	return C.erf(a)
}

// erfc computes the complementary error function value
[inline]
pub fn erfc(a f64) f64 {
	return C.erfc(a)
}

// exp2 returns the base-2 exponential function of a (math.pow(2, a)).
[inline]
pub fn exp2(a f64) f64 {
	return C.exp2(a)
}

// floor returns the nearest f64 lower or equal of the provided value.
[inline]
pub fn floor(a f64) f64 {
	return C.floor(a)
}

// fmod returns the floating-point remainder of number / denom (rounded towards zero):
[inline]
pub fn fmod(a f64, b f64) f64 {
	return C.fmod(a, b)
}

// gamma computes the gamma function value
[inline]
pub fn gamma(a f64) f64 {
	return C.tgamma(a)
}

// Returns hypotenuse of a right triangle.
[inline]
pub fn hypot(a f64, b f64) f64 {
	return C.hypot(a, b)
}

// log calculates natural (base-e) logarithm of the provided value.
[inline]
pub fn log(a f64) f64 {
	return C.log(a)
}

// log2 calculates base-2 logarithm of the provided value.
[inline]
pub fn log2(a f64) f64 {
	return C.log2(a)
}

// log10 calculates the common (base-10) logarithm of the provided value.
[inline]
pub fn log10(a f64) f64 {
	return C.log10(a)
}

// log_gamma computes the log-gamma function value
[inline]
pub fn log_gamma(a f64) f64 {
	return C.lgamma(a)
}

// log_n calculates base-N logarithm of the provided value.
[inline]
pub fn log_n(a f64, b f64) f64 {
	return C.log(a) / C.log(b)
}

// pow returns base raised to the provided power.
[inline]
pub fn pow(a f64, b f64) f64 {
	return C.pow(a, b)
}

// powf returns base raised to the provided power. (float32)
[inline]
pub fn powf(a f32, b f32) f32 {
	return C.powf(a, b)
}

// round returns the integer nearest to the provided value.
[inline]
pub fn round(f f64) f64 {
	return C.round(f)
}

// sin calculates sine.
[inline]
pub fn sin(a f64) f64 {
	return C.sin(a)
}

// sinf calculates sine. (float32)
[inline]
pub fn sinf(a f32) f32 {
	return C.sinf(a)
}

// sinh calculates hyperbolic sine.
[inline]
pub fn sinh(a f64) f64 {
	return C.sinh(a)
}

// sqrt calculates square-root of the provided value.
[inline]
pub fn sqrt(a f64) f64 {
	return C.sqrt(a)
}

// sqrtf calculates square-root of the provided value. (float32)
[inline]
pub fn sqrtf(a f32) f32 {
	return C.sqrtf(a)
}

// tan calculates tangent.
[inline]
pub fn tan(a f64) f64 {
	return C.tan(a)
}

// tanf calculates tangent. (float32)
[inline]
pub fn tanf(a f32) f32 {
	return C.tanf(a)
}

// tanh calculates hyperbolic tangent.
[inline]
pub fn tanh(a f64) f64 {
	return C.tanh(a)
}

// trunc rounds a toward zero, returning the nearest integral value that is not
// larger in magnitude than a.
[inline]
pub fn trunc(a f64) f64 {
	return C.trunc(a)
}