aboutsummaryrefslogtreecommitdiff
path: root/v_windows/v/old/vlib/net/address.v
blob: af1a000cafbd9e7c659daebc2d033dc88724a239 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
module net

import io.util
import os

union AddrData {
	Unix
	Ip
	Ip6
}

const (
	addr_ip6_any = [16]byte{init: byte(0)}
	addr_ip_any  = [4]byte{init: byte(0)}
)

fn new_ip6(port u16, addr [16]byte) Addr {
	a := Addr{
		f: u16(AddrFamily.ip6)
		addr: AddrData{
			Ip6: Ip6{
				port: u16(C.htons(port))
			}
		}
	}

	copy(a.addr.Ip6.addr[0..], addr[0..])

	return a
}

fn new_ip(port u16, addr [4]byte) Addr {
	a := Addr{
		f: u16(AddrFamily.ip)
		addr: AddrData{
			Ip: Ip{
				port: u16(C.htons(port))
			}
		}
	}

	copy(a.addr.Ip6.addr[0..], addr[0..])

	return a
}

fn temp_unix() ?Addr {
	// create a temp file to get a filename
	// close it
	// remove it
	// then reuse the filename
	mut file, filename := util.temp_file() ?
	file.close()
	os.rm(filename) ?
	addrs := resolve_addrs(filename, .unix, .udp) ?
	return addrs[0]
}

pub fn (a Addr) family() AddrFamily {
	return AddrFamily(a.f)
}

const (
	max_ip_len  = 24
	max_ip6_len = 46
)

fn (a Ip) str() string {
	buf := []byte{len: net.max_ip_len, init: 0}

	res := &char(C.inet_ntop(.ip, &a.addr, buf.data, buf.len))

	if res == 0 {
		return '<Unknown>'
	}

	saddr := buf.bytestr()
	port := C.ntohs(a.port)

	return '$saddr:$port'
}

fn (a Ip6) str() string {
	buf := []byte{len: net.max_ip6_len, init: 0}

	res := &char(C.inet_ntop(.ip6, &a.addr, buf.data, buf.len))

	if res == 0 {
		return '<Unknown>'
	}

	saddr := buf.bytestr()
	port := C.ntohs(a.port)

	return '[$saddr]:$port'
}

const aoffset = __offsetof(Addr, addr)

fn (a Addr) len() u32 {
	match a.family() {
		.ip {
			return sizeof(Ip) + net.aoffset
		}
		.ip6 {
			return sizeof(Ip6) + net.aoffset
		}
		.unix {
			return sizeof(Unix) + net.aoffset
		}
		else {
			panic('Unknown address family')
		}
	}
}

pub fn resolve_addrs(addr string, family AddrFamily, @type SocketType) ?[]Addr {
	match family {
		.ip, .ip6, .unspec {
			return resolve_ipaddrs(addr, family, @type)
		}
		.unix {
			resolved := Unix{}

			if addr.len > max_unix_path {
				return error('net: resolve_addrs Unix socket address is too long')
			}

			// Copy the unix path into the address struct
			unsafe {
				C.memcpy(&resolved.path, addr.str, addr.len)
			}

			return [Addr{
				f: u16(AddrFamily.unix)
				addr: AddrData{
					Unix: resolved
				}
			}]
		}
	}
}

pub fn resolve_addrs_fuzzy(addr string, @type SocketType) ?[]Addr {
	if addr.len == 0 {
		return none
	}

	// Use a small heuristic to figure out what address family this is
	// (out of the ones that we support)

	if addr.contains(':') {
		// Colon is a reserved character in unix paths
		// so this must be an ip address
		return resolve_addrs(addr, .unspec, @type)
	}

	return resolve_addrs(addr, .unix, @type)
}

pub fn resolve_ipaddrs(addr string, family AddrFamily, typ SocketType) ?[]Addr {
	address, port := split_address(addr) ?

	if addr[0] == `:` {
		// Use in6addr_any
		return [new_ip6(port, net.addr_ip6_any)]
	}

	mut hints := C.addrinfo{
		// ai_family: int(family)
		// ai_socktype: int(typ)
		// ai_flags: C.AI_PASSIVE
	}
	hints.ai_family = int(family)
	hints.ai_socktype = int(typ)
	hints.ai_flags = C.AI_PASSIVE
	hints.ai_protocol = 0
	hints.ai_addrlen = 0
	hints.ai_addr = voidptr(0)
	hints.ai_canonname = voidptr(0)
	hints.ai_next = voidptr(0)
	results := &C.addrinfo(0)

	sport := '$port'

	// This might look silly but is recommended by MSDN
	$if windows {
		socket_error(0 - C.getaddrinfo(&char(address.str), &char(sport.str), &hints, &results)) ?
	} $else {
		x := C.getaddrinfo(&char(address.str), &char(sport.str), &hints, &results)
		wrap_error(x) ?
	}

	defer {
		C.freeaddrinfo(results)
	}

	// Now that we have our linked list of addresses
	// convert them into an array
	mut addresses := []Addr{}

	for result := results; !isnil(result); result = result.ai_next {
		match AddrFamily(result.ai_family) {
			.ip, .ip6 {
				new_addr := Addr{
					addr: AddrData{
						Ip6: Ip6{}
					}
				}
				unsafe {
					C.memcpy(&new_addr, result.ai_addr, result.ai_addrlen)
				}
				addresses << new_addr
			}
			else {
				panic('Unexpected address family $result.ai_family')
			}
		}
	}

	return addresses
}

fn (a Addr) str() string {
	match AddrFamily(a.f) {
		.ip {
			unsafe {
				return a.addr.Ip.str()
			}
		}
		.ip6 {
			unsafe {
				return a.addr.Ip6.str()
			}
		}
		.unix {
			unsafe {
				return tos_clone(a.addr.Unix.path[0..max_unix_path].data)
			}
		}
		.unspec {
			return '<.unspec>'
		}
	}
}

pub fn addr_from_socket_handle(handle int) Addr {
	addr := Addr{
		addr: AddrData{
			Ip6: Ip6{}
		}
	}
	size := sizeof(addr)

	C.getsockname(handle, voidptr(&addr), &size)

	return addr
}