aboutsummaryrefslogtreecommitdiff
path: root/v_windows/v/old/vlib/rand/splitmix64/splitmix64.v
blob: d3cb9d172499d21049322528fe7bd6158abf53f0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
// Copyright (c) 2019-2021 Alexander Medvednikov. All rights reserved.
// Use of this source code is governed by an MIT license
// that can be found in the LICENSE file.
module splitmix64

import rand.seed
import rand.constants

// SplitMix64RNG ported from http://xoshiro.di.unimi.it/splitmix64.c
pub struct SplitMix64RNG {
mut:
	state     u64 = seed.time_seed_64()
	has_extra bool
	extra     u32
}

// seed sets the seed of the accepting SplitMix64RNG to the given data
// in little-endian format (i.e. lower 32 bits are in [0] and higher 32 bits in [1]).
pub fn (mut rng SplitMix64RNG) seed(seed_data []u32) {
	if seed_data.len != 2 {
		eprintln('SplitMix64RNG needs 2 32-bit unsigned integers as the seed.')
		exit(1)
	}
	rng.state = seed_data[0] | (u64(seed_data[1]) << 32)
	rng.has_extra = false
}

// u32 updates the PRNG state and returns the next pseudorandom `u32`.
[inline]
pub fn (mut rng SplitMix64RNG) u32() u32 {
	if rng.has_extra {
		rng.has_extra = false
		return rng.extra
	}
	full_value := rng.u64()
	lower := u32(full_value & constants.lower_mask)
	upper := u32(full_value >> 32)
	rng.extra = upper
	rng.has_extra = true
	return lower
}

// u64 updates the PRNG state and returns the next pseudorandom `u64`.
[inline]
pub fn (mut rng SplitMix64RNG) u64() u64 {
	rng.state += (0x9e3779b97f4a7c15)
	mut z := rng.state
	z = (z ^ ((z >> u64(30)))) * (0xbf58476d1ce4e5b9)
	z = (z ^ ((z >> u64(27)))) * (0x94d049bb133111eb)
	return z ^ (z >> (31))
}

// u32n returns a pseudorandom `u32` less than `bound`.
[inline]
pub fn (mut rng SplitMix64RNG) u32n(bound u32) u32 {
	// This function is kept similar to the u64 version
	if bound == 0 {
		eprintln('max must be non-zero')
		exit(1)
	}
	threshold := -bound % bound
	for {
		r := rng.u32()
		if r >= threshold {
			return r % bound
		}
	}
	return u32(0)
}

// u64n returns a pseudorandom `u64` less than `bound`.
[inline]
pub fn (mut rng SplitMix64RNG) u64n(bound u64) u64 {
	// See pcg32.v for explanation of comment. This algorithm
	// existed before the refactoring.
	if bound == 0 {
		eprintln('max must be non-zero')
		exit(1)
	}
	threshold := -bound % bound
	for {
		r := rng.u64()
		if r >= threshold {
			return r % bound
		}
	}
	return u64(0)
}

// u32n returns a pseudorandom `u32` value that is guaranteed to be in range `[min, max)`.
[inline]
pub fn (mut rng SplitMix64RNG) u32_in_range(min u32, max u32) u32 {
	if max <= min {
		eprintln('max must be greater than min')
		exit(1)
	}
	return min + rng.u32n(max - min)
}

// u64n returns a pseudorandom `u64` value that is guaranteed to be in range `[min, max)`.
[inline]
pub fn (mut rng SplitMix64RNG) u64_in_range(min u64, max u64) u64 {
	if max <= min {
		eprintln('max must be greater than min')
		exit(1)
	}
	return min + rng.u64n(max - min)
}

// int returns a pseudorandom 32-bit (possibly negative) `int`.
[inline]
pub fn (mut rng SplitMix64RNG) int() int {
	return int(rng.u32())
}

// i64 returns a pseudorandom 64-bit (possibly negative) `i64`.
[inline]
pub fn (mut rng SplitMix64RNG) i64() i64 {
	return i64(rng.u64())
}

// int31 returns a positive pseudorandom 31-bit `int`.
[inline]
pub fn (mut rng SplitMix64RNG) int31() int {
	return int(rng.u32() & constants.u31_mask) // Set the 32nd bit to 0.
}

// int63 returns a positive pseudorandom 63-bit `i64`.
[inline]
pub fn (mut rng SplitMix64RNG) int63() i64 {
	return i64(rng.u64() & constants.u63_mask) // Set the 64th bit to 0.
}

// intn returns a pseudorandom `int` in range `[0, max)`.
[inline]
pub fn (mut rng SplitMix64RNG) intn(max int) int {
	if max <= 0 {
		eprintln('max has to be positive.')
		exit(1)
	}
	return int(rng.u32n(u32(max)))
}

// i64n returns a pseudorandom `i64` in range `[0, max)`.
[inline]
pub fn (mut rng SplitMix64RNG) i64n(max i64) i64 {
	if max <= 0 {
		eprintln('max has to be positive.')
		exit(1)
	}
	return i64(rng.u64n(u64(max)))
}

// int_in_range returns a pseudorandom `int` in range `[min, max)`.
[inline]
pub fn (mut rng SplitMix64RNG) int_in_range(min int, max int) int {
	if max <= min {
		eprintln('max must be greater than min')
		exit(1)
	}
	// This supports negative ranges like [-10, -5) because the difference is positive
	return min + rng.intn(max - min)
}

// i64_in_range returns a pseudorandom `i64` in range `[min, max)`.
[inline]
pub fn (mut rng SplitMix64RNG) i64_in_range(min i64, max i64) i64 {
	if max <= min {
		eprintln('max must be greater than min')
		exit(1)
	}
	return min + rng.i64n(max - min)
}

// f32 returns a pseudorandom `f32` value in range `[0, 1)`.
[inline]
pub fn (mut rng SplitMix64RNG) f32() f32 {
	return f32(rng.u32()) / constants.max_u32_as_f32
}

// f64 returns a pseudorandom `f64` value in range `[0, 1)`.
[inline]
pub fn (mut rng SplitMix64RNG) f64() f64 {
	return f64(rng.u64()) / constants.max_u64_as_f64
}

// f32n returns a pseudorandom `f32` value in range `[0, max)`.
[inline]
pub fn (mut rng SplitMix64RNG) f32n(max f32) f32 {
	if max <= 0 {
		eprintln('max has to be positive.')
		exit(1)
	}
	return rng.f32() * max
}

// f64n returns a pseudorandom `f64` value in range `[0, max)`.
[inline]
pub fn (mut rng SplitMix64RNG) f64n(max f64) f64 {
	if max <= 0 {
		eprintln('max has to be positive.')
		exit(1)
	}
	return rng.f64() * max
}

// f32_in_range returns a pseudorandom `f32` in range `[min, max)`.
[inline]
pub fn (mut rng SplitMix64RNG) f32_in_range(min f32, max f32) f32 {
	if max <= min {
		eprintln('max must be greater than min')
		exit(1)
	}
	return min + rng.f32n(max - min)
}

// i64_in_range returns a pseudorandom `i64` in range `[min, max)`.
[inline]
pub fn (mut rng SplitMix64RNG) f64_in_range(min f64, max f64) f64 {
	if max <= min {
		eprintln('max must be greater than min')
		exit(1)
	}
	return min + rng.f64n(max - min)
}