1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
|
module math
// Floating-point mod function.
// mod returns the floating-point remainder of x/y.
// The magnitude of the result is less than y and its
// sign agrees with that of x.
//
// special cases are:
// mod(±inf, y) = nan
// mod(nan, y) = nan
// mod(x, 0) = nan
// mod(x, ±inf) = x
// mod(x, nan) = nan
pub fn mod(x f64, y f64) f64 {
return fmod(x, y)
}
// fmod returns the floating-point remainder of number / denom (rounded towards zero)
pub fn fmod(x f64, y f64) f64 {
if y == 0 || is_inf(x, 0) || is_nan(x) || is_nan(y) {
return nan()
}
abs_y := abs(y)
abs_y_fr, abs_y_exp := frexp(abs_y)
mut r := x
if x < 0 {
r = -x
}
for r >= abs_y {
rfr, mut rexp := frexp(r)
if rfr < abs_y_fr {
rexp = rexp - 1
}
r = r - ldexp(abs_y, rexp - abs_y_exp)
}
if x < 0 {
r = -r
}
return r
}
// gcd calculates greatest common (positive) divisor (or zero if a and b are both zero).
pub fn gcd(a_ i64, b_ i64) i64 {
mut a := a_
mut b := b_
if a < 0 {
a = -a
}
if b < 0 {
b = -b
}
for b != 0 {
a %= b
if a == 0 {
return b
}
b %= a
}
return a
}
// egcd returns (gcd(a, b), x, y) such that |a*x + b*y| = gcd(a, b)
pub fn egcd(a i64, b i64) (i64, i64, i64) {
mut old_r, mut r := a, b
mut old_s, mut s := i64(1), i64(0)
mut old_t, mut t := i64(0), i64(1)
for r != 0 {
quot := old_r / r
old_r, r = r, old_r % r
old_s, s = s, old_s - quot * s
old_t, t = t, old_t - quot * t
}
return if old_r < 0 { -old_r } else { old_r }, old_s, old_t
}
// lcm calculates least common (non-negative) multiple.
pub fn lcm(a i64, b i64) i64 {
if a == 0 {
return a
}
res := a * (b / gcd(b, a))
if res < 0 {
return -res
}
return res
}
|