1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
|
module math
const (
pow10tab = [f64(1e+00), 1e+01, 1e+02, 1e+03, 1e+04, 1e+05, 1e+06, 1e+07, 1e+08, 1e+09,
1e+10, 1e+11, 1e+12, 1e+13, 1e+14, 1e+15, 1e+16, 1e+17, 1e+18, 1e+19, 1e+20, 1e+21, 1e+22,
1e+23, 1e+24, 1e+25, 1e+26, 1e+27, 1e+28, 1e+29, 1e+30, 1e+31]
pow10postab32 = [f64(1e+00), 1e+32, 1e+64, 1e+96, 1e+128, 1e+160, 1e+192, 1e+224, 1e+256, 1e+288]
pow10negtab32 = [f64(1e-00), 1e-32, 1e-64, 1e-96, 1e-128, 1e-160, 1e-192, 1e-224, 1e-256, 1e-288,
1e-320,
]
)
// powf returns base raised to the provided power. (float32)
[inline]
pub fn powf(a f32, b f32) f32 {
return f32(pow(a, b))
}
// pow10 returns 10**n, the base-10 exponential of n.
//
// special cases are:
// pow10(n) = 0 for n < -323
// pow10(n) = +inf for n > 308
pub fn pow10(n int) f64 {
if 0 <= n && n <= 308 {
return math.pow10postab32[u32(n) / 32] * math.pow10tab[u32(n) % 32]
}
if -323 <= n && n <= 0 {
return math.pow10negtab32[u32(-n) / 32] / math.pow10tab[u32(-n) % 32]
}
// n < -323 || 308 < n
if n > 0 {
return inf(1)
}
// n < -323
return 0.0
}
|