aboutsummaryrefslogtreecommitdiff
path: root/v_windows/v/vlib/rand/pcg32/pcg32.v
blob: 25a83f7f74540a16bedd21d83fda28f8ceb17f0b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
// Copyright (c) 2019-2021 Alexander Medvednikov. All rights reserved.
// Use of this source code is governed by an MIT license
// that can be found in the LICENSE file.
module pcg32

import rand.seed
import rand.constants

// PCG32RNG ported from http://www.pcg-random.org/download.html,
// https://github.com/imneme/pcg-c-basic/blob/master/pcg_basic.c, and
// https://github.com/imneme/pcg-c-basic/blob/master/pcg_basic.h
pub struct PCG32RNG {
mut:
	state u64 = u64(0x853c49e6748fea9b) ^ seed.time_seed_64()
	inc   u64 = u64(0xda3e39cb94b95bdb) ^ seed.time_seed_64()
}

// seed seeds the PCG32RNG with 4 `u32` values.
// The first 2 represent the 64-bit initial state as `[lower 32 bits, higher 32 bits]`
// The last 2 represent the 64-bit stream/step of the PRNG.
pub fn (mut rng PCG32RNG) seed(seed_data []u32) {
	if seed_data.len != 4 {
		eprintln('PCG32RNG needs 4 u32s to be seeded. First two the initial state and the last two the stream/step. Both in little endian format: [lower, higher].')
		exit(1)
	}
	init_state := u64(seed_data[0]) | (u64(seed_data[1]) << 32)
	init_seq := u64(seed_data[2]) | (u64(seed_data[3]) << 32)
	rng.state = u64(0)
	rng.inc = (init_seq << u64(1)) | u64(1)
	rng.u32()
	rng.state += init_state
	rng.u32()
}

// u32 returns a pseudorandom unsigned `u32`.
[inline]
pub fn (mut rng PCG32RNG) u32() u32 {
	oldstate := rng.state
	rng.state = oldstate * (6364136223846793005) + rng.inc
	xorshifted := u32(((oldstate >> u64(18)) ^ oldstate) >> u64(27))
	rot := u32(oldstate >> u64(59))
	return ((xorshifted >> rot) | (xorshifted << ((-rot) & u32(31))))
}

// u64 returns a pseudorandom 64-bit unsigned `u64`.
[inline]
pub fn (mut rng PCG32RNG) u64() u64 {
	return u64(rng.u32()) | (u64(rng.u32()) << 32)
}

// u32n returns a pseudorandom 32-bit unsigned `u32` in range `[0, max)`.
[inline]
pub fn (mut rng PCG32RNG) u32n(max u32) u32 {
	if max == 0 {
		eprintln('max must be positive')
		exit(1)
	}
	// To avoid bias, we need to make the range of the RNG a multiple of
	// max, which we do by dropping output less than a threshold.
	threshold := (-max % max)
	// Uniformity guarantees that loop below will terminate. In practice, it
	// should usually terminate quickly; on average (assuming all max's are
	// equally likely), 82.25% of the time, we can expect it to require just
	// one iteration. In practice, max's are typically small and only a
	// tiny amount of the range is eliminated.
	for {
		r := rng.u32()
		if r >= threshold {
			return (r % max)
		}
	}
	return u32(0)
}

// u64n returns a pseudorandom 64-bit unsigned `u64` in range `[0, max)`.
[inline]
pub fn (mut rng PCG32RNG) u64n(max u64) u64 {
	if max == 0 {
		eprintln('max must be positive')
		exit(1)
	}
	threshold := (-max % max)
	for {
		r := rng.u64()
		if r >= threshold {
			return (r % max)
		}
	}
	return u64(0)
}

// u32_in_range returns a pseudorandom 32-bit unsigned `u32` in range `[min, max)`.
[inline]
pub fn (mut rng PCG32RNG) u32_in_range(min u32, max u32) u32 {
	if max <= min {
		eprintln('max must be greater than min')
		exit(1)
	}
	return min + rng.u32n(u32(max - min))
}

// u64_in_range returns a pseudorandom 64-bit unsigned `u64` in range `[min, max)`.
[inline]
pub fn (mut rng PCG32RNG) u64_in_range(min u64, max u64) u64 {
	if max <= min {
		eprintln('max must be greater than min')
		exit(1)
	}
	return min + rng.u64n(max - min)
}

// int returns a 32-bit signed (possibly negative) `int`.
[inline]
pub fn (mut rng PCG32RNG) int() int {
	return int(rng.u32())
}

// i64 returns a 64-bit signed (possibly negative) `i64`.
[inline]
pub fn (mut rng PCG32RNG) i64() i64 {
	return i64(rng.u64())
}

// int31 returns a 31-bit positive pseudorandom `int`.
[inline]
pub fn (mut rng PCG32RNG) int31() int {
	return int(rng.u32() >> 1)
}

// int63 returns a 63-bit positive pseudorandom `i64`.
[inline]
pub fn (mut rng PCG32RNG) int63() i64 {
	return i64(rng.u64() >> 1)
}

// intn returns a 32-bit positive `int` in range `[0, max)`.
[inline]
pub fn (mut rng PCG32RNG) intn(max int) int {
	if max <= 0 {
		eprintln('max has to be positive.')
		exit(1)
	}
	return int(rng.u32n(u32(max)))
}

// i64n returns a 64-bit positive `i64` in range `[0, max)`.
[inline]
pub fn (mut rng PCG32RNG) i64n(max i64) i64 {
	if max <= 0 {
		eprintln('max has to be positive.')
		exit(1)
	}
	return i64(rng.u64n(u64(max)))
}

// int_in_range returns a 32-bit positive `int` in range `[0, max)`.
[inline]
pub fn (mut rng PCG32RNG) int_in_range(min int, max int) int {
	if max <= min {
		eprintln('max must be greater than min.')
		exit(1)
	}
	return min + rng.intn(max - min)
}

// i64_in_range returns a 64-bit positive `i64` in range `[0, max)`.
[inline]
pub fn (mut rng PCG32RNG) i64_in_range(min i64, max i64) i64 {
	if max <= min {
		eprintln('max must be greater than min.')
		exit(1)
	}
	return min + rng.i64n(max - min)
}

// f32 returns a pseudorandom `f32` value in range `[0, 1)`.
[inline]
pub fn (mut rng PCG32RNG) f32() f32 {
	return f32(rng.u32()) / constants.max_u32_as_f32
}

// f64 returns a pseudorandom `f64` value in range `[0, 1)`.
[inline]
pub fn (mut rng PCG32RNG) f64() f64 {
	return f64(rng.u64()) / constants.max_u64_as_f64
}

// f32n returns a pseudorandom `f32` value in range `[0, max)`.
[inline]
pub fn (mut rng PCG32RNG) f32n(max f32) f32 {
	if max <= 0 {
		eprintln('max has to be positive.')
		exit(1)
	}
	return rng.f32() * max
}

// f64n returns a pseudorandom `f64` value in range `[0, max)`.
[inline]
pub fn (mut rng PCG32RNG) f64n(max f64) f64 {
	if max <= 0 {
		eprintln('max has to be positive.')
		exit(1)
	}
	return rng.f64() * max
}

// f32_in_range returns a pseudorandom `f32` in range `[min, max)`.
[inline]
pub fn (mut rng PCG32RNG) f32_in_range(min f32, max f32) f32 {
	if max <= min {
		eprintln('max must be greater than min')
		exit(1)
	}
	return min + rng.f32n(max - min)
}

// i64_in_range returns a pseudorandom `i64` in range `[min, max)`.
[inline]
pub fn (mut rng PCG32RNG) f64_in_range(min f64, max f64) f64 {
	if max <= min {
		eprintln('max must be greater than min')
		exit(1)
	}
	return min + rng.f64n(max - min)
}