New raylib 5.5 raymath functions.

This commit is contained in:
jussi
2024-11-21 14:54:10 +02:00
parent 6317547502
commit 3d5eeac3d7
6 changed files with 1086 additions and 0 deletions

290
API.md
View File

@@ -8835,6 +8835,22 @@ Calculate reflected vector to normal
---
> result = RL.Vector2Min( Vector2 v1, Vector2 v2 )
Get min value for each pair of components
- Success return Vector2
---
> result = RL.Vector2Max( Vector2 v1, Vector2 v2 )
Get max value for each pair of components
- Success return Vector2
---
> result = RL.Vector2Rotate( Vector2 v, float angle )
Rotate vector by angle
@@ -8884,6 +8900,18 @@ Check whether two given vectors are almost equal
---
> result = RL.Vector2Refract( Vector2 v, Vector2 n, float r )
Compute the direction of a refracted ray
v: normalized direction of the incoming ray
n: normalized normal vector of the interface of two optical media
r: ratio of the refractive index of the medium from where the ray comes
to the refractive index of the medium on the other side of the surface
- Success return Vector2
---
## Math - Vector 3
---
@@ -9089,6 +9117,14 @@ Rotates a vector around an axis
---
> result = RL.Vector3MoveTowards( Vector3 v, Vector3 target, float maxDistance )
Move Vector towards target
- Success return Vector3
---
> result = RL.Vector3Lerp( Vector3 v1, Vector3 v2, float amount )
Calculate linear interpolation between two vectors
@@ -9097,6 +9133,15 @@ Calculate linear interpolation between two vectors
---
> result = RL.Vector3CubicHermite( Vector3 v1, Vector3 tangent1, Vector3 v2, Vector3 tangent2, float amount )
Calculate cubic hermite interpolation between two vectors and their tangents
as described in the GLTF 2.0 specification: https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html#interpolation-cubic
- Success return Vector3
---
> result = RL.Vector3Reflect( Vector3 v, Vector3 normal )
Calculate reflected vector to normal
@@ -9185,6 +9230,186 @@ on the other side of the surface
---
## Math - Vector4
---
> result = RL.Vector4Zero()
Vector with components value 0.0f
- Success return Vector4
---
> result = RL.Vector4One()
Vector with components value 1.0f
- Success return Vector4
---
> result = RL.Vector4Add( Vector4 v1, Vector4 v2 )
Add two vectors
- Success return Vector4
---
> result = RL.Vector4AddValue( Vector4 v, float add )
Add vector and float value
- Success return Vector4
---
> result = RL.Vector4Subtract( Vector4 v1, Vector4 v2 )
Subtract two vectors
- Success return Vector4
---
> result = RL.Vector4SubtractValue( Vector4 v, float sub )
Subtract vector by float value
- Success return Vector4
---
> result = RL.Vector4Length( Vector4 v )
Calculate vector length
- Success return float
---
> result = RL.Vector4LengthSqr( Vector4 v )
Calculate vector square length
- Success return float
---
> result = RL.Vector4DotProduct( Vector4 v1, Vector4 v2 )
Calculate two vectors dot product
- Success return float
---
> result = RL.Vector4Distance( Vector4 v1, Vector4 v2 )
Calculate distance between two vectors
- Success return float
---
> result = RL.Vector4DistanceSqr( Vector4 v1, Vector4 v2 )
Calculate square distance between two vectors
- Success return float
---
> result = RL.Vector4Scale( Vector4 v, float scalar )
Multiply vector by scalar
- Success return Vector4
---
> result = RL.Vector4Multiply( Vector4 v1, Vector4 v2 )
Multiply vector by vector
- Success return Vector4
---
> result = RL.Vector4Negate( Vector4 v )
Negate provided vector (invert direction)
- Success return Vector4
---
> result = RL.Vector4Divide( Vector4 v1, Vector4 v2 )
Divide vector by vector
- Success return Vector4
---
> result = RL.Vector4Normalize( Vector4 v )
Normalize provided vector
- Success return Vector4
---
> result = RL.Vector4Min( Vector4 v1, Vector4 v2 )
Get min value for each pair of components
- Success return Vector4
---
> result = RL.Vector4Max( Vector4 v1, Vector4 v2 )
Get max value for each pair of components
- Success return Vector4
---
> result = RL.Vector4Lerp( Vector4 v1, Vector4 v2, float amount )
Calculate linear interpolation between two vectors
- Success return Vector4
---
> result = RL.Vector4MoveTowards( Vector4 v, Vector4 target, float maxDistance )
Move Vector towards target
- Success return Vector4
---
> result = RL.Vector4Invert( Vector4 v )
Invert the given vector
- Success return Vector4
---
> result = RL.Vector4Equals( Vector4 v1, Vector4 v2 )
Check whether two given vectors are almost equal
- Success return bool
---
## Math - Matrix
---
@@ -9349,6 +9574,14 @@ Get camera look-at matrix (View matrix)
---
> translation, rotation, scale = RL.MatrixDecompose( Matrix mat )
Decompose a transformation matrix into its rotational, translational and scaling components
- Success return Vector3, Quaternion, Vector3
---
## Math - Quaternion
---
@@ -9465,6 +9698,15 @@ Calculates spherical linear interpolation between two quaternions
---
> result = RL.QuaternionCubicHermiteSpline( Quaternion q1, Quaternion outTangent1, Quaternion q2, Quaternion inTangent2, float t )
Calculate quaternion cubic spline interpolation using Cubic Hermite Spline algorithm
as described in the GLTF 2.0 specification: https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html#interpolation-cubic
- Success return Quaternion
---
> result = RL.QuaternionFromVector3ToVector3( Vector3 from, Vector3 to )
Calculate quaternion based on the rotation from one vector to another
@@ -10202,6 +10444,28 @@ NOTE: We store current viewport dimensions
---
> RL.rlSetClipPlanes( float nearPlane, float farPlane )
Set clip planes distances
---
> distance = RL.rlGetCullDistanceNear()
Get cull plane distance near
- Success return float
---
> distance = RL.rlGetCullDistanceFar()
Get cull plane distance far
- Success return float
---
## RLGL - Vertex level operations
---
@@ -10407,6 +10671,14 @@ Disable render texture (fbo), return to default framebuffer
---
> framebuffer = RL.rlGetActiveFramebuffer()
Get the currently active render texture (fbo), 0 for default framebuffer
- Success return int
---
> RL.rlActiveDrawBuffers( int count )
Activate multiple draw color buffers
@@ -10419,6 +10691,12 @@ Blit active framebuffer to main framebuffer
---
> RL.rlBindFramebuffer( int target, int framebuffer )
Bind framebuffer (FBO)
---
## RLGL - General render state
---
@@ -10471,6 +10749,12 @@ Disable backface culling
---
> RL.rlColorMask( bool r, bool g, bool b, bool a )
Color mask control
---
> RL.rlSetCullFace( int mode )
Set face culling mode
@@ -10977,6 +11261,12 @@ Set shader value matrix
---
> RL.rlSetUniformMatrices( int locIndex, Matrix{} mat )
Set shader value matrices
---
> RL.rlSetUniformSampler( int locIndex, int textureId )
Set shader value sampler

View File

@@ -5884,6 +5884,20 @@ function RL.Vector2Lerp( v1, v2, amount ) end
---@return any result
function RL.Vector2Reflect( v, normal ) end
---Get min value for each pair of components
---- Success return Vector2
---@param v1 table
---@param v2 table
---@return any result
function RL.Vector2Min( v1, v2 ) end
---Get max value for each pair of components
---- Success return Vector2
---@param v1 table
---@param v2 table
---@return any result
function RL.Vector2Max( v1, v2 ) end
---Rotate vector by angle
---- Success return Vector2
---@param v table
@@ -5929,6 +5943,18 @@ function RL.Vector2ClampValue( v, min, max ) end
---@return any result
function RL.Vector2Equals( v1, v2 ) end
---Compute the direction of a refracted ray
---v: normalized direction of the incoming ray
---n: normalized normal vector of the interface of two optical media
---r: ratio of the refractive index of the medium from where the ray comes
--- to the refractive index of the medium on the other side of the surface
---- Success return Vector2
---@param v table
---@param n table
---@param r number
---@return any result
function RL.Vector2Refract( v, n, r ) end
-- Math - Vector 3
---Vector with components value 0.0f
@@ -6100,6 +6126,14 @@ function RL.Vector3RotateByQuaternion( v, q ) end
---@return any result
function RL.Vector3RotateByAxisAngle( v, axis, angle ) end
---Move Vector towards target
---- Success return Vector3
---@param v table
---@param target table
---@param maxDistance number
---@return any result
function RL.Vector3MoveTowards( v, target, maxDistance ) end
---Calculate linear interpolation between two vectors
---- Success return Vector3
---@param v1 table
@@ -6108,6 +6142,17 @@ function RL.Vector3RotateByAxisAngle( v, axis, angle ) end
---@return any result
function RL.Vector3Lerp( v1, v2, amount ) end
---Calculate cubic hermite interpolation between two vectors and their tangents
---as described in the GLTF 2.0 specification: https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html#interpolation-cubic
---- Success return Vector3
---@param v1 table
---@param tangent1 table
---@param v2 table
---@param tangent2 table
---@param amount number
---@return any result
function RL.Vector3CubicHermite( v1, tangent1, v2, tangent2, amount ) end
---Calculate reflected vector to normal
---- Success return Vector3
---@param v table
@@ -6191,6 +6236,155 @@ function RL.Vector3Equals( v1, v2 ) end
---@return any result
function RL.Vector3Refract( v, n, r ) end
-- Math - Vector4
---Vector with components value 0.0f
---- Success return Vector4
---@return any result
function RL.Vector4Zero() end
---Vector with components value 1.0f
---- Success return Vector4
---@return any result
function RL.Vector4One() end
---Add two vectors
---- Success return Vector4
---@param v1 table
---@param v2 table
---@return any result
function RL.Vector4Add( v1, v2 ) end
---Add vector and float value
---- Success return Vector4
---@param v table
---@param add number
---@return any result
function RL.Vector4AddValue( v, add ) end
---Subtract two vectors
---- Success return Vector4
---@param v1 table
---@param v2 table
---@return any result
function RL.Vector4Subtract( v1, v2 ) end
---Subtract vector by float value
---- Success return Vector4
---@param v table
---@param sub number
---@return any result
function RL.Vector4SubtractValue( v, sub ) end
---Calculate vector length
---- Success return float
---@param v table
---@return any result
function RL.Vector4Length( v ) end
---Calculate vector square length
---- Success return float
---@param v table
---@return any result
function RL.Vector4LengthSqr( v ) end
---Calculate two vectors dot product
---- Success return float
---@param v1 table
---@param v2 table
---@return any result
function RL.Vector4DotProduct( v1, v2 ) end
---Calculate distance between two vectors
---- Success return float
---@param v1 table
---@param v2 table
---@return any result
function RL.Vector4Distance( v1, v2 ) end
---Calculate square distance between two vectors
---- Success return float
---@param v1 table
---@param v2 table
---@return any result
function RL.Vector4DistanceSqr( v1, v2 ) end
---Multiply vector by scalar
---- Success return Vector4
---@param v table
---@param scalar number
---@return any result
function RL.Vector4Scale( v, scalar ) end
---Multiply vector by vector
---- Success return Vector4
---@param v1 table
---@param v2 table
---@return any result
function RL.Vector4Multiply( v1, v2 ) end
---Negate provided vector (invert direction)
---- Success return Vector4
---@param v table
---@return any result
function RL.Vector4Negate( v ) end
---Divide vector by vector
---- Success return Vector4
---@param v1 table
---@param v2 table
---@return any result
function RL.Vector4Divide( v1, v2 ) end
---Normalize provided vector
---- Success return Vector4
---@param v table
---@return any result
function RL.Vector4Normalize( v ) end
---Get min value for each pair of components
---- Success return Vector4
---@param v1 table
---@param v2 table
---@return any result
function RL.Vector4Min( v1, v2 ) end
---Get max value for each pair of components
---- Success return Vector4
---@param v1 table
---@param v2 table
---@return any result
function RL.Vector4Max( v1, v2 ) end
---Calculate linear interpolation between two vectors
---- Success return Vector4
---@param v1 table
---@param v2 table
---@param amount number
---@return any result
function RL.Vector4Lerp( v1, v2, amount ) end
---Move Vector towards target
---- Success return Vector4
---@param v table
---@param target table
---@param maxDistance number
---@return any result
function RL.Vector4MoveTowards( v, target, maxDistance ) end
---Invert the given vector
---- Success return Vector4
---@param v table
---@return any result
function RL.Vector4Invert( v ) end
---Check whether two given vectors are almost equal
---- Success return bool
---@param v1 table
---@param v2 table
---@return any result
function RL.Vector4Equals( v1, v2 ) end
-- Math - Matrix
---Compute matrix determinant
@@ -6331,6 +6525,14 @@ function RL.MatrixOrtho( left, right, bottom, top, near, far ) end
---@return any result
function RL.MatrixLookAt( eye, target, up ) end
---Decompose a transformation matrix into its rotational, translational and scaling components
---- Success return Vector3, Quaternion, Vector3
---@param mat table
---@return any translation
---@return any rotation
---@return any scale
function RL.MatrixDecompose( mat ) end
-- Math - Quaternion
---Add two quaternions
@@ -6429,6 +6631,17 @@ function RL.QuaternionNlerp( q1, q2, amount ) end
---@return any result
function RL.QuaternionSlerp( q1, q2, amount ) end
---Calculate quaternion cubic spline interpolation using Cubic Hermite Spline algorithm
---as described in the GLTF 2.0 specification: https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html#interpolation-cubic
---- Success return Quaternion
---@param q1 table
---@param outTangent1 table
---@param q2 table
---@param inTangent2 table
---@param t number
---@return any result
function RL.QuaternionCubicHermiteSpline( q1, outTangent1, q2, inTangent2, t ) end
---Calculate quaternion based on the rotation from one vector to another
---- Success return Quaternion
---@param from table
@@ -7138,6 +7351,22 @@ function RL.rlOrtho( left, right, bottom, top, znear, zfar ) end
---@return any RL.rlViewport
function RL.rlViewport( viewport ) end
---Set clip planes distances
---@param nearPlane number
---@param farPlane number
---@return any RL.rlSetClipPlanes
function RL.rlSetClipPlanes( nearPlane, farPlane ) end
---Get cull plane distance near
---- Success return float
---@return any distance
function RL.rlGetCullDistanceNear() end
---Get cull plane distance far
---- Success return float
---@return any distance
function RL.rlGetCullDistanceFar() end
-- RLGL - Vertex level operations
---Initialize drawing mode (how to organize vertex)
@@ -7298,6 +7527,11 @@ function RL.rlEnableFramebuffer( id ) end
---@return any RL.rlDisableFramebuffer
function RL.rlDisableFramebuffer() end
---Get the currently active render texture (fbo), 0 for default framebuffer
---- Success return int
---@return any framebuffer
function RL.rlGetActiveFramebuffer() end
---Activate multiple draw color buffers
---@param count integer
---@return any RL.rlActiveDrawBuffers
@@ -7310,6 +7544,12 @@ function RL.rlActiveDrawBuffers( count ) end
---@return any RL.rlBlitFramebuffer
function RL.rlBlitFramebuffer( srcRect, dstRect, bufferMask ) end
---Bind framebuffer (FBO)
---@param target integer
---@param framebuffer integer
---@return any RL.rlBindFramebuffer
function RL.rlBindFramebuffer( target, framebuffer ) end
-- RLGL - General render state
---Enable color blending
@@ -7344,6 +7584,14 @@ function RL.rlEnableBackfaceCulling() end
---@return any RL.rlDisableBackfaceCulling
function RL.rlDisableBackfaceCulling() end
---Color mask control
---@param r boolean
---@param g boolean
---@param b boolean
---@param a boolean
---@return any RL.rlColorMask
function RL.rlColorMask( r, g, b, a ) end
---Set face culling mode
---@param mode integer
---@return any RL.rlSetCullFace
@@ -7777,6 +8025,12 @@ function RL.rlSetUniform( locIndex, value, uniformType, count ) end
---@return any RL.rlSetUniformMatrix
function RL.rlSetUniformMatrix( locIndex, mat ) end
---Set shader value matrices
---@param locIndex integer
---@param mat table
---@return any RL.rlSetUniformMatrices
function RL.rlSetUniformMatrices( locIndex, mat ) end
---Set shader value sampler
---@param locIndex integer
---@param textureId integer

View File

@@ -20,6 +20,8 @@ DETAILED CHANGES:
- ADDED: DrawModelPoints, DrawModelPointsEx, ExportMeshAsCode and UpdateModelAnimationBones.
- ADDED: rlSetClipPlanes, rlGetCullDistanceNear, rlGetCullDistanceFar, rlGetActiveFramebuffer,
rlBindFramebuffer, rlColorMask and rlSetUniformMatrices.
- ADDED: Vector2Min, Vector2Max, Vector2Refract, Vector3MoveTowards, Vector3CubicHermite,
QuaternionCubicHermiteSpline, MatrixDecompose and Vector4* functions.
------------------------------------------------------------------------
Release: ReiLua version 0.8.0 Using Raylib 5.0 and Forked Raygui 4.0

View File

@@ -34,12 +34,15 @@ int lmathVector2Normalize( lua_State* L );
int lmathVector2Transform( lua_State* L );
int lmathVector2Lerp( lua_State* L );
int lmathVector2Reflect( lua_State* L );
int lmathVector2Min( lua_State* L );
int lmathVector2Max( lua_State* L );
int lmathVector2Rotate( lua_State* L );
int lmathVector2MoveTowards( lua_State* L );
int lmathVector2Invert( lua_State* L );
int lmathVector2Clamp( lua_State* L );
int lmathVector2ClampValue( lua_State* L );
int lmathVector2Equals( lua_State* L );
int lmathVector2Refract( lua_State* L );
/* Vector3. */
int lmathVector3Zero( lua_State* L );
int lmathVector3One( lua_State* L );
@@ -66,7 +69,9 @@ int lmathVector3OrthoNormalize( lua_State* L );
int lmathVector3Transform( lua_State* L );
int lmathVector3RotateByQuaternion( lua_State* L );
int lmathVector3RotateByAxisAngle( lua_State* L );
int lmathVector3MoveTowards( lua_State* L );
int lmathVector3Lerp( lua_State* L );
int lmathVector3CubicHermite( lua_State* L );
int lmathVector3Reflect( lua_State* L );
int lmathVector3Min( lua_State* L );
int lmathVector3Max( lua_State* L );
@@ -77,6 +82,29 @@ int lmathVector3Clamp( lua_State* L );
int lmathVector3ClampValue( lua_State* L );
int lmathVector3Equals( lua_State* L );
int lmathVector3Refract( lua_State* L );
/* Vector4. */
int lmathVector4Zero( lua_State* L );
int lmathVector4One( lua_State* L );
int lmathVector4Add( lua_State* L );
int lmathVector4AddValue( lua_State* L );
int lmathVector4Subtract( lua_State* L );
int lmathVector4SubtractValue( lua_State* L );
int lmathVector4Length( lua_State* L );
int lmathVector4LengthSqr( lua_State* L );
int lmathVector4DotProduct( lua_State* L );
int lmathVector4Distance( lua_State* L );
int lmathVector4DistanceSqr( lua_State* L );
int lmathVector4Scale( lua_State* L );
int lmathVector4Multiply( lua_State* L );
int lmathVector4Negate( lua_State* L );
int lmathVector4Divide( lua_State* L );
int lmathVector4Normalize( lua_State* L );
int lmathVector4Min( lua_State* L );
int lmathVector4Max( lua_State* L );
int lmathVector4Lerp( lua_State* L );
int lmathVector4MoveTowards( lua_State* L );
int lmathVector4Invert( lua_State* L );
int lmathVector4Equals( lua_State* L );
/* Matrix. */
int lmathMatrixDeterminant( lua_State* L );
int lmathMatrixTrace( lua_State* L );
@@ -98,6 +126,7 @@ int lmathMatrixFrustum( lua_State* L );
int lmathMatrixPerspective( lua_State* L );
int lmathMatrixOrtho( lua_State* L );
int lmathMatrixLookAt( lua_State* L );
int lmathMatrixDecompose( lua_State* L );
/* Quaternion. */
int lmathQuaternionAdd( lua_State* L );
int lmathQuaternionAddValue( lua_State* L );
@@ -113,6 +142,7 @@ int lmathQuaternionDivide( lua_State* L );
int lmathQuaternionLerp( lua_State* L );
int lmathQuaternionNlerp( lua_State* L );
int lmathQuaternionSlerp( lua_State* L );
int lmathQuaternionCubicHermiteSpline( lua_State* L );
int lmathQuaternionFromVector3ToVector3( lua_State* L );
int lmathQuaternionFromMatrix( lua_State* L );
int lmathQuaternionToMatrix( lua_State* L );

View File

@@ -2005,12 +2005,15 @@ void luaRegister() {
assingGlobalFunction( "Vector2Transform", lmathVector2Transform );
assingGlobalFunction( "Vector2Lerp", lmathVector2Lerp );
assingGlobalFunction( "Vector2Reflect", lmathVector2Reflect );
assingGlobalFunction( "Vector2Min", lmathVector2Min );
assingGlobalFunction( "Vector2Max", lmathVector2Max );
assingGlobalFunction( "Vector2Rotate", lmathVector2Rotate );
assingGlobalFunction( "Vector2MoveTowards", lmathVector2MoveTowards );
assingGlobalFunction( "Vector2Invert", lmathVector2Invert );
assingGlobalFunction( "Vector2Clamp", lmathVector2Clamp );
assingGlobalFunction( "Vector2ClampValue", lmathVector2ClampValue );
assingGlobalFunction( "Vector2Equals", lmathVector2Equals );
assingGlobalFunction( "Vector2Refract", lmathVector2Refract );
/* Vector3. */
assingGlobalFunction( "Vector3Zero", lmathVector3Zero );
assingGlobalFunction( "Vector3One", lmathVector3One );
@@ -2037,7 +2040,9 @@ void luaRegister() {
assingGlobalFunction( "Vector3Transform", lmathVector3Transform );
assingGlobalFunction( "Vector3RotateByQuaternion", lmathVector3RotateByQuaternion );
assingGlobalFunction( "Vector3RotateByAxisAngle", lmathVector3RotateByAxisAngle );
assingGlobalFunction( "Vector3MoveTowards", lmathVector3MoveTowards );
assingGlobalFunction( "Vector3Lerp", lmathVector3Lerp );
assingGlobalFunction( "Vector3CubicHermite", lmathVector3CubicHermite );
assingGlobalFunction( "Vector3Reflect", lmathVector3Reflect );
assingGlobalFunction( "Vector3Min", lmathVector3Min );
assingGlobalFunction( "Vector3Max", lmathVector3Max );
@@ -2048,6 +2053,29 @@ void luaRegister() {
assingGlobalFunction( "Vector3ClampValue", lmathVector3ClampValue );
assingGlobalFunction( "Vector3Equals", lmathVector3Equals );
assingGlobalFunction( "Vector3Refract", lmathVector3Refract );
/* Vector4. */
assingGlobalFunction( "Vector4Zero", lmathVector4Zero );
assingGlobalFunction( "Vector4One", lmathVector4One );
assingGlobalFunction( "Vector4Add", lmathVector4Add );
assingGlobalFunction( "Vector4AddValue", lmathVector4AddValue );
assingGlobalFunction( "Vector4Subtract", lmathVector4Subtract );
assingGlobalFunction( "Vector4SubtractValue", lmathVector4SubtractValue );
assingGlobalFunction( "Vector4Length", lmathVector4Length );
assingGlobalFunction( "Vector4LengthSqr", lmathVector4LengthSqr );
assingGlobalFunction( "Vector4DotProduct", lmathVector4DotProduct );
assingGlobalFunction( "Vector4Distance", lmathVector4Distance );
assingGlobalFunction( "Vector4DistanceSqr", lmathVector4DistanceSqr );
assingGlobalFunction( "Vector4Scale", lmathVector4Scale );
assingGlobalFunction( "Vector4Multiply", lmathVector4Multiply );
assingGlobalFunction( "Vector4Negate", lmathVector4Negate );
assingGlobalFunction( "Vector4Divide", lmathVector4Divide );
assingGlobalFunction( "Vector4Normalize", lmathVector4Normalize );
assingGlobalFunction( "Vector4Min", lmathVector4Min );
assingGlobalFunction( "Vector4Max", lmathVector4Max );
assingGlobalFunction( "Vector4Lerp", lmathVector4Lerp );
assingGlobalFunction( "Vector4MoveTowards", lmathVector4MoveTowards );
assingGlobalFunction( "Vector4Invert", lmathVector4Invert );
assingGlobalFunction( "Vector4Equals", lmathVector4Equals );
/* Matrix. */
assingGlobalFunction( "MatrixDeterminant", lmathMatrixDeterminant );
assingGlobalFunction( "MatrixTrace", lmathMatrixTrace );
@@ -2069,6 +2097,7 @@ void luaRegister() {
assingGlobalFunction( "MatrixPerspective", lmathMatrixPerspective );
assingGlobalFunction( "MatrixOrtho", lmathMatrixOrtho );
assingGlobalFunction( "MatrixLookAt", lmathMatrixLookAt );
assingGlobalFunction( "MatrixDecompose", lmathMatrixDecompose );
/* Quaternion. */
assingGlobalFunction( "QuaternionAdd", lmathQuaternionAdd );
assingGlobalFunction( "QuaternionAddValue", lmathQuaternionAddValue );
@@ -2084,6 +2113,7 @@ void luaRegister() {
assingGlobalFunction( "QuaternionLerp", lmathQuaternionLerp );
assingGlobalFunction( "QuaternionNlerp", lmathQuaternionNlerp );
assingGlobalFunction( "QuaternionSlerp", lmathQuaternionSlerp );
assingGlobalFunction( "QuaternionCubicHermiteSpline", lmathQuaternionCubicHermiteSpline );
assingGlobalFunction( "QuaternionFromVector3ToVector3", lmathQuaternionFromVector3ToVector3 );
assingGlobalFunction( "QuaternionFromMatrix", lmathQuaternionFromMatrix );
assingGlobalFunction( "QuaternionToMatrix", lmathQuaternionToMatrix );

View File

@@ -482,6 +482,38 @@ int lmathVector2Reflect( lua_State* L ) {
return 1;
}
/*
> result = RL.Vector2Min( Vector2 v1, Vector2 v2 )
Get min value for each pair of components
- Success return Vector2
*/
int lmathVector2Min( lua_State* L ) {
Vector2 v1 = uluaGetVector2( L, 1 );
Vector2 v2 = uluaGetVector2( L, 2 );
uluaPushVector2( L, Vector2Min( v1, v2 ) );
return 1;
}
/*
> result = RL.Vector2Max( Vector2 v1, Vector2 v2 )
Get max value for each pair of components
- Success return Vector2
*/
int lmathVector2Max( lua_State* L ) {
Vector2 v1 = uluaGetVector2( L, 1 );
Vector2 v2 = uluaGetVector2( L, 2 );
uluaPushVector2( L, Vector2Max( v1, v2 ) );
return 1;
}
/*
> result = RL.Vector2Rotate( Vector2 v, float angle )
@@ -581,6 +613,27 @@ int lmathVector2Equals( lua_State* L ) {
return 1;
}
/*
> result = RL.Vector2Refract( Vector2 v, Vector2 n, float r )
Compute the direction of a refracted ray
v: normalized direction of the incoming ray
n: normalized normal vector of the interface of two optical media
r: ratio of the refractive index of the medium from where the ray comes
to the refractive index of the medium on the other side of the surface
- Success return Vector2
*/
int lmathVector2Refract( lua_State* L ) {
Vector2 v = uluaGetVector2( L, 1 );
Vector2 n = uluaGetVector2( L, 2 );
float r = luaL_checknumber( L, 3 );
uluaPushVector2( L, Vector2Refract( v, n, r ) );
return 1;
}
/*
## Math - Vector 3
*/
@@ -979,6 +1032,23 @@ int lmathVector3RotateByAxisAngle( lua_State* L ) {
return 1;
}
/*
> result = RL.Vector3MoveTowards( Vector3 v, Vector3 target, float maxDistance )
Move Vector towards target
- Success return Vector3
*/
int lmathVector3MoveTowards( lua_State* L ) {
Vector3 v = uluaGetVector3( L, 1 );
Vector3 target = uluaGetVector3( L, 2 );
float maxDistance = luaL_checknumber( L, 3 );
uluaPushVector3( L, Vector3MoveTowards( v, target, maxDistance ) );
return 1;
}
/*
> result = RL.Vector3Lerp( Vector3 v1, Vector3 v2, float amount )
@@ -996,6 +1066,26 @@ int lmathVector3Lerp( lua_State* L ) {
return 1;
}
/*
> result = RL.Vector3CubicHermite( Vector3 v1, Vector3 tangent1, Vector3 v2, Vector3 tangent2, float amount )
Calculate cubic hermite interpolation between two vectors and their tangents
as described in the GLTF 2.0 specification: https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html#interpolation-cubic
- Success return Vector3
*/
int lmathVector3CubicHermite( lua_State* L ) {
Vector3 v1 = uluaGetVector3( L, 1 );
Vector3 tangent1 = uluaGetVector3( L, 2 );
Vector3 v2 = uluaGetVector3( L, 3 );
Vector3 tangent2 = uluaGetVector3( L, 4 );
float amount = luaL_checknumber( L, 5 );
uluaPushVector3( L, Vector3CubicHermite( v1, tangent1, v2, tangent2, amount ) );
return 1;
}
/*
> result = RL.Vector3Reflect( Vector3 v, Vector3 normal )
@@ -1169,6 +1259,353 @@ int lmathVector3Refract( lua_State* L ) {
return 1;
}
/*
## Math - Vector4
*/
/*
> result = RL.Vector4Zero()
Vector with components value 0.0f
- Success return Vector4
*/
int lmathVector4Zero( lua_State* L ) {
uluaPushVector4( L, Vector4Zero() );
return 1;
}
/*
> result = RL.Vector4One()
Vector with components value 1.0f
- Success return Vector4
*/
int lmathVector4One( lua_State* L ) {
uluaPushVector4( L, Vector4One() );
return 1;
}
/*
> result = RL.Vector4Add( Vector4 v1, Vector4 v2 )
Add two vectors
- Success return Vector4
*/
int lmathVector4Add( lua_State* L ) {
Vector4 v1 = uluaGetVector4( L, 1 );
Vector4 v2 = uluaGetVector4( L, 2 );
uluaPushVector4( L, Vector4Add( v1, v2 ) );
return 1;
}
/*
> result = RL.Vector4AddValue( Vector4 v, float add )
Add vector and float value
- Success return Vector4
*/
int lmathVector4AddValue( lua_State* L ) {
Vector4 v = uluaGetVector4( L, 1 );
float add = luaL_checknumber( L, 2 );
uluaPushVector4( L, Vector4AddValue( v, add ) );
return 1;
}
/*
> result = RL.Vector4Subtract( Vector4 v1, Vector4 v2 )
Subtract two vectors
- Success return Vector4
*/
int lmathVector4Subtract( lua_State* L ) {
Vector4 v1 = uluaGetVector4( L, 1 );
Vector4 v2 = uluaGetVector4( L, 2 );
uluaPushVector4( L, Vector4Subtract( v1, v2 ) );
return 1;
}
/*
> result = RL.Vector4SubtractValue( Vector4 v, float sub )
Subtract vector by float value
- Success return Vector4
*/
int lmathVector4SubtractValue( lua_State* L ) {
Vector4 v = uluaGetVector4( L, 1 );
float sub = luaL_checknumber( L, 2 );
uluaPushVector4( L, Vector4SubtractValue( v, sub ) );
return 1;
}
/*
> result = RL.Vector4Length( Vector4 v )
Calculate vector length
- Success return float
*/
int lmathVector4Length( lua_State* L ) {
Vector4 v = uluaGetVector4( L, 1 );
lua_pushnumber( L, Vector4Length( v ) );
return 1;
}
/*
> result = RL.Vector4LengthSqr( Vector4 v )
Calculate vector square length
- Success return float
*/
int lmathVector4LengthSqr( lua_State* L ) {
Vector4 v = uluaGetVector4( L, 1 );
lua_pushnumber( L, Vector4LengthSqr( v ) );
return 1;
}
/*
> result = RL.Vector4DotProduct( Vector4 v1, Vector4 v2 )
Calculate two vectors dot product
- Success return float
*/
int lmathVector4DotProduct( lua_State* L ) {
Vector4 v1 = uluaGetVector4( L, 1 );
Vector4 v2 = uluaGetVector4( L, 2 );
lua_pushnumber( L, Vector4DotProduct( v1, v2 ) );
return 1;
}
/*
> result = RL.Vector4Distance( Vector4 v1, Vector4 v2 )
Calculate distance between two vectors
- Success return float
*/
int lmathVector4Distance( lua_State* L ) {
Vector4 v1 = uluaGetVector4( L, 1 );
Vector4 v2 = uluaGetVector4( L, 2 );
lua_pushnumber( L, Vector4Distance( v1, v2 ) );
return 1;
}
/*
> result = RL.Vector4DistanceSqr( Vector4 v1, Vector4 v2 )
Calculate square distance between two vectors
- Success return float
*/
int lmathVector4DistanceSqr( lua_State* L ) {
Vector4 v1 = uluaGetVector4( L, 1 );
Vector4 v2 = uluaGetVector4( L, 2 );
lua_pushnumber( L, Vector4DistanceSqr( v1, v2 ) );
return 1;
}
/*
> result = RL.Vector4Scale( Vector4 v, float scalar )
Multiply vector by scalar
- Success return Vector4
*/
int lmathVector4Scale( lua_State* L ) {
Vector4 v = uluaGetVector4( L, 1 );
float scalar = luaL_checknumber( L, 2 );
uluaPushVector4( L, Vector4Scale( v, scalar ) );
return 1;
}
/*
> result = RL.Vector4Multiply( Vector4 v1, Vector4 v2 )
Multiply vector by vector
- Success return Vector4
*/
int lmathVector4Multiply( lua_State* L ) {
Vector4 v1 = uluaGetVector4( L, 1 );
Vector4 v2 = uluaGetVector4( L, 2 );
uluaPushVector4( L, Vector4Multiply( v1, v2 ) );
return 1;
}
/*
> result = RL.Vector4Negate( Vector4 v )
Negate provided vector (invert direction)
- Success return Vector4
*/
int lmathVector4Negate( lua_State* L ) {
Vector4 v = uluaGetVector4( L, 1 );
uluaPushVector4( L, Vector4Negate( v ) );
return 1;
}
/*
> result = RL.Vector4Divide( Vector4 v1, Vector4 v2 )
Divide vector by vector
- Success return Vector4
*/
int lmathVector4Divide( lua_State* L ) {
Vector4 v1 = uluaGetVector4( L, 1 );
Vector4 v2 = uluaGetVector4( L, 2 );
uluaPushVector4( L, Vector4Divide( v1, v2 ) );
return 1;
}
/*
> result = RL.Vector4Normalize( Vector4 v )
Normalize provided vector
- Success return Vector4
*/
int lmathVector4Normalize( lua_State* L ) {
Vector4 v = uluaGetVector4( L, 1 );
uluaPushVector4( L, Vector4Normalize( v ) );
return 1;
}
/*
> result = RL.Vector4Min( Vector4 v1, Vector4 v2 )
Get min value for each pair of components
- Success return Vector4
*/
int lmathVector4Min( lua_State* L ) {
Vector4 v1 = uluaGetVector4( L, 1 );
Vector4 v2 = uluaGetVector4( L, 2 );
uluaPushVector4( L, Vector4Min( v1, v2 ) );
return 1;
}
/*
> result = RL.Vector4Max( Vector4 v1, Vector4 v2 )
Get max value for each pair of components
- Success return Vector4
*/
int lmathVector4Max( lua_State* L ) {
Vector4 v1 = uluaGetVector4( L, 1 );
Vector4 v2 = uluaGetVector4( L, 2 );
uluaPushVector4( L, Vector4Max( v1, v2 ) );
return 1;
}
/*
> result = RL.Vector4Lerp( Vector4 v1, Vector4 v2, float amount )
Calculate linear interpolation between two vectors
- Success return Vector4
*/
int lmathVector4Lerp( lua_State* L ) {
Vector4 v1 = uluaGetVector4( L, 1 );
Vector4 v2 = uluaGetVector4( L, 2 );
float amount = luaL_checknumber( L, 3 );
uluaPushVector4( L, Vector4Lerp( v1, v2, amount ) );
return 1;
}
/*
> result = RL.Vector4MoveTowards( Vector4 v, Vector4 target, float maxDistance )
Move Vector towards target
- Success return Vector4
*/
int lmathVector4MoveTowards( lua_State* L ) {
Vector4 v = uluaGetVector4( L, 1 );
Vector4 target = uluaGetVector4( L, 2 );
float maxDistance = luaL_checknumber( L, 3 );
uluaPushVector4( L, Vector4MoveTowards( v, target, maxDistance ) );
return 1;
}
/*
> result = RL.Vector4Invert( Vector4 v )
Invert the given vector
- Success return Vector4
*/
int lmathVector4Invert( lua_State* L ) {
Vector4 v = uluaGetVector4( L, 1 );
uluaPushVector4( L, Vector4Invert( v ) );
return 1;
}
/*
> result = RL.Vector4Equals( Vector4 v1, Vector4 v2 )
Check whether two given vectors are almost equal
- Success return bool
*/
int lmathVector4Equals( lua_State* L ) {
Vector4 v1 = uluaGetVector4( L, 1 );
Vector4 v2 = uluaGetVector4( L, 2 );
lua_pushboolean( L, Vector4Equals( v1, v2 ) == 1 );
return 1;
}
/*
## Math - Matrix
*/
@@ -1490,6 +1927,29 @@ int lmathMatrixLookAt( lua_State* L ) {
return 1;
}
/*
> translation, rotation, scale = RL.MatrixDecompose( Matrix mat )
Decompose a transformation matrix into its rotational, translational and scaling components
- Success return Vector3, Quaternion, Vector3
*/
int lmathMatrixDecompose( lua_State* L ) {
Matrix mat = uluaGetMatrix( L, 1 );
Vector3 translation = { 0 };
Quaternion rotation = { 0 };
Vector3 scale = { 0 };
MatrixDecompose( mat, &translation, &rotation, &scale );
uluaPushVector3( L, translation );
uluaPushQuaternion( L, rotation );
uluaPushVector3( L, scale );
return 3;
}
/*
## Math - Quaternion
*/
@@ -1715,6 +2175,26 @@ int lmathQuaternionSlerp( lua_State* L ) {
return 1;
}
/*
> result = RL.QuaternionCubicHermiteSpline( Quaternion q1, Quaternion outTangent1, Quaternion q2, Quaternion inTangent2, float t )
Calculate quaternion cubic spline interpolation using Cubic Hermite Spline algorithm
as described in the GLTF 2.0 specification: https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html#interpolation-cubic
- Success return Quaternion
*/
int lmathQuaternionCubicHermiteSpline( lua_State* L ) {
Quaternion q1 = uluaGetQuaternion( L, 1 );
Quaternion outTangent1 = uluaGetQuaternion( L, 2 );
Quaternion q2 = uluaGetQuaternion( L, 3 );
Quaternion inTangent2 = uluaGetQuaternion( L, 4 );
float t = luaL_checknumber( L, 5 );
uluaPushQuaternion( L, QuaternionCubicHermiteSpline( q1, outTangent1, q2, inTangent2, t ) );
return 1;
}
/*
> result = RL.QuaternionFromVector3ToVector3( Vector3 from, Vector3 to )