1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
|
MLib
====
__MLib__ is a math and shape-intersection detection library written in Lua. It's aim is to be __robust__ and __easy to use__.
__NOTE:__
- I am (slowly) working on completely rewriting this in order to be easier to use and less bug-prone. You can check out the progress [here](../../tree/dev).
- I am currently slowing development of MLib while moving over to helping with [CPML](https://github.com/excessive/cpml). To discuss this, please comment [here](../../issues/12).
If you are looking for a library that handles updating/collision responses for you, take a look at [hxdx](https://github.com/adonaac/hxdx). It uses MLib functions as well as Box2d to handle physics calculations.
## Downloading
You can download the latest __stable__ version of MLib by downloading the latest [release](../../releases/).
You can download the latest __working__ version of MLib by downloading the latest [commit](../../commits/master/). Documentation will __only__ be updated upon releases, not upon commits.
## Implementing
To use MLib, simply place [mlib.lua](mlib.lua) inside the desired folder in your project. Then use the `require 'path.to.mlib'` to use any of the functions.
## Examples
If you don't have [LÖVE](https://love2d.org/) installed, you can download the .zip of the demo from the [Executables](Examples/Executables) folder and extract and run the .exe that way.
You can see some examples of the code in action [here](Examples).
All examples are done using the *awesome* engine of [LÖVE](https://love2d.org/).
To run them properly, download the [.love file](Examples/LOVE) and install LÖVE to your computer.
After that, make sure you set .love files to open with "love.exe".
For more, see [here](https://love2d.org/).
## When should I use MLib?
- If you need to know exactly where two objects intersect.
- If you need general mathematical equations to be done.
- If you need very precise details about point intersections.
## When should I __not__ use MLib?
- All of the objects in a platformer, or other game, for instance, should not be registered with MLib. Only ones that need very specific information.
- When you don't need precise information/odd shapes.
## Specs
#### For Windows
If you run Windows and have Telescope in `%USERPROFILE%\Documents\GitHub` (you can also manually change the path in [test.bat](test.bat)) you can simply run [test.bat](test.bat) and it will display the results, and then clean up after it's finished.
#### Default
Alternatively, you can find the tests [here](spec.lua). Keep in mind that you may need to change certain semantics to suit your OS.
You can run them via [Telescope](https://github.com/norman/telescope/) and type the following command in the command-line of the root folder:
```
tsc -f specs.lua
```
If that does not work, you made need to put a link to Lua inside of the folder for `telescope` and run the following command:
```
lua tsc -f specs.lua
```
If you encounter further errors, try to run the command line as an administrator (usually located in `C:\Windows\System32\`), then right-click on `cmd.exe` and select `Run as administrator`, then do
```
cd C:\Path\to\telescope\
```
And __then__ run one of the above commands. If none of those work, just take my word for it that all the tests pass and look at this picture.
![Success](Reference Pictures/Success.png)
## Functions
- [mlib.line](#mlibline)
- [mlib.line.checkPoint](#mliblinecheckpoint)
- [mlib.line.getClosestPoint](#mliblinegetclosestpoint)
- [mlib.line.getYIntercept](#mliblinegetintercept)
- [mlib.line.getIntersection](#mliblinegetintersection)
- [mlib.line.getLength](#mliblinegetlength)
- [mlib.line.getMidpoint](#mliblinegetmidpoint)
- [mlib.line.getPerpendicularSlope](#mliblinegetperpendicularslope)
- [mlib.line.getSegmentIntersection](#mliblinegetsegmentintersection)
- [mlib.line.getSlope](#mliblinegetslope)
- [mlib.segment](#mlibsegment)
- [mlib.segment.checkPoint](#mlibsegmentcheckpoint)
- [mlib.segment.getPerpendicularBisector](#mlibsegmentgetperpendicularbisector)
- [mlib.segment.getIntersection](#mlibsegmentgetintersection)
- [mlib.polygon](#mlibpolygon)
- [mlib.polygon.checkPoint](#mlibpolygoncheckpoint)
- [mlib.polygon.getCentroid](#mlibpolygongetcentroid)
- [mlib.polygon.getCircleIntersection](#mlibpolygongetcircleintersection)
- [mlib.polygon.getLineIntersection](#mlibpolygongetlineintersection)
- [mlib.polygon.getPolygonArea](#mlibpolygongetpolygonarea)
- [mlib.polygon.getPolygonIntersection](#mlibpolygongetpolygonintersection)
- [mlib.polygon.getSegmentIntersection](#mlibpolygongetsegmentintersection)
- [mlib.polygon.getSignedPolygonArea](#mlibpolygongetsignedpolygonarea)
- [mlib.polygon.getTriangleHeight](#mlibpolygongettriangleheight)
- [mlib.polygon.isCircleInside](#mlibpolygoniscircleinside)
- [mlib.polygon.isCircleCompletelyInside](#mlibpolygoniscirclecompletelyinside)
- [mlib.polygon.isPolygonInside](#mlibpolygonispolygoninside)
- [mlib.polygon.isPolygonCompletelyInside](#mlibpolygonispolygoncompletelyinside)
- [mlib.polygon.isSegmentInside](#mlibpolygonissegmentinside)
- [mlib.polygon.isSegmentCompletelyInside](#mlibpolygonissegmentcompletelyinside)
- [mlib.circle](#mlibcircle)
- [mlib.circle.checkPoint](#mlibcirclecheckpoint)
- [mlib.circle.getArea](#mlibcirclegetarea)
- [mlib.circle.getCircleIntersection](#mlibcirclegetcircleintersection)
- [mlib.circle.getCircumference](#mlibcirclegetcircumference)
- [mlib.circle.getLineIntersection](#mlibcirclegetlineintersection)
- [mlib.circle.getSegmentIntersection](#mlibcirclegetsegmentintersection)
- [mlib.circle.isCircleCompletelyInside](#mlibcircleiscirclecompletelyinside)
- [mlib.circle.isCircleCompletelyInsidePolygon](#mlibcircleiscirclecompletelyinsidepolygon)
- [mlib.circle.isPointOnCircle](#mlibcircleispointoncircle)
- [mlib.circle.isPolygonCompletelyInside](#mlibcircleispolygoncompletelyinside)
- [mlib.statistics](#mlibstatistics)
- [mlib.statistics.getCentralTendency](#mlibstatisticsgetcentraltendency)
- [mlib.statistics.getDispersion](#mlibstatisticsgetdispersion)
- [mlib.statistics.getMean](#mlibstatisticsgetmean)
- [mlib.statistics.getMedian](#mlibstatisticsgetmedian)
- [mlib.statistics.getMode](#mlibstatisticsgetmode)
- [mlib.statistics.getRange](#mlibstatisticsgetrange)
- [mlib.statistics.getStandardDeviation](#mlibstatisticsgetstandarddeviation)
- [mlib.statistics.getVariance](#mlibstatisticsgetvariance)
- [mlib.statistics.getVariationRatio](#mlibstatisticsgetvariationratio)
- [mlib.math](#mlibmath)
- [mlib.math.getAngle](#mlibmathgetangle)
- [mlib.math.getPercentage](#mlibmathgetpercentage)
- [mlib.math.getPercentOfChange](#mlibmathgetpercentofchange)
- [mlib.math.getQuadraticRoots](#mlibmathgetquadraticroots)
- [mlib.math.getRoot](#mlibmathgetroot)
- [mlib.math.getSummation](#mlibmathgetsummation)
- [mlib.math.isPrime](#mlibmathisprime)
- [mlib.math.round](#mlibmathround)
- [Aliases](#aliases)
#### mlib.line
- Deals with linear aspects, such as slope and length.
##### mlib.line.checkPoint
- Checks if a point lies on a line.
- Synopsis:
- `onPoint = mlib.line.checkPoint( px, px, x1, y1, x2, y2 )`
- Arguments:
- `px`, `py`: Numbers. The x and y coordinates of the point being tested.
- `x1`, `y1`, `x2`, `y2`: Numbers. Two x and y coordinates of the line being tested.
- Returns:
- `onPoint`: Boolean.
- `true` if the point is on the line.
- `false` if it does not.
- Notes:
- You cannot use the format `mlib.line.checkPoint( px, px, slope, intercept )` because this would lead to errors on vertical lines.
##### mlib.line.getClosestPoint
- Gives the closest point to a line.
- Synopses:
- `cx, cy = mlib.line.getClosestPoint( px, py, x1, y1, x2, y2 )`
- `cx, cy = mlib.line.getClosestPoint( px, py, slope, intercept )`
- Arguments:
- `x`, `y`: Numbers. The x and y coordinates of the point.
- `x1`, `y1`, `x2`, `y2`: Numbers. Two x and y coordinates on the line.
- `slope`, `intercept`:
- Numbers. The slope and y-intercept of the line.
- Booleans (`false`). The slope and y-intercept of a vertical line.
- Returns:
- `cx`, `cy`: Numbers. The closest points that lie on the line to the point.
##### mlib.line.getYIntercept
- Gives y-intercept of the line.
- Synopses:
- `intercept, isVertical = mlib.line.getYIntercept( x1, y1, x2, y2 )`
- `intercept, isVertical = mlib.line.getYIntercept( x1, y1, slope )`
- Arguments:
- `x1`, `y1`, `x2`, `y2`: Numbers. Two x and y coordinates that lie on the line.
- `slope`:
- Number. The slope of the line.
- Returns:
- `intercept`:
- Number. The y-intercept of the line.
- Number. The `x1` coordinate of the line if the line is vertical.
- `isVertical`:
- Boolean. `true` if the line is vertical, `false` if the line is not vertical.
##### mlib.line.getIntersection
- Gives the intersection of two lines.
- Synopses:
- `x, y = mlib.line.getIntersection( x1, y1, x2, y2, x3, y3, x4, y4 )`
- `x, y = mlib.line.getIntersection( slope1, intercept1, x3, y3, x4, y4 )`
- `x, y = mlib.line.getIntersection( slope1, intercept1, slope2, intercept2 )`
- Arguments:
- `x1`, `y1`, `x2`, `y2`: Numbers. Two x and y coordinates that lie on the first line.
- `x3`, `y3`, `x4`, `y4`: Numbers. Two x and y coordinates that lie on the second line.
- `slope1`, `intercept1`:
- Numbers. The slope and y-intercept of the first line.
- Booleans (`false`). The slope and y-intercept of the first line (if the first line is vertical).
- `slope2`, `intercept2`:
- Numbers. The slope and y-intercept of the second line.
- Booleans (`false`). The slope and y-intercept of the second line (if the second line is vertical).
- Returns:
- `x`, `y`:
- Numbers. The x and y coordinate where the lines intersect.
- Boolean:
- `true`, `nil`: The lines are collinear.
- `false`, `nil`: The lines are parallel and __not__ collinear.
##### mlib.line.getLength
- Gives the distance between two points.
- Synopsis:
- `length = mlib.line.getLength( x1, y1, x2, y2 )
- Arguments:
- `x1`, `y1`, `x2`, `y2`: Numbers. Two x and y coordinates.
- Returns:
- `length`: Number. The distance between the two points.
##### mlib.line.getMidpoint
- Gives the midpoint of two points.
- Synopsis:
- `x, y = mlib.line.getMidpoint( x1, y1, x2, y2 )`
- Arguments:
- `x1`, `y1`, `x2`, `y2`: Numbers. Two x and y coordinates.
- Returns:
- `x`, `y`: Numbers. The midpoint x and y coordinates.
##### mlib.line.getPerpendicularSlope
- Gives the perpendicular slope of a line.
- Synopses:
- `perpSlope = mlib.line.getPerpendicularSlope( x1, y1, x2, y2 )`
- `perpSlope = mlib.line.getPerpendicularSlope( slope )`
- Arguments:
- `x1`, `y1`, `x2`, `y2`: Numbers. Two x and y coordinates.
- `slope`: Number. The slope of the line.
- Returns:
- `perpSlope`:
- Number. The perpendicular slope of the line.
- Boolean (`false`). The perpendicular slope of the line (if the original line was horizontal).
##### mlib.line.getSegmentIntersection
- Gives the intersection of a line segment and a line.
- Synopses:
- `x1, y1, x2, y2 = mlib.line.getSegmentIntersection( x1, y1, x2, y2, x3, y3, x4, y4 )`
- `x1, y1, x2, y2 = mlib.line.getSegmentIntersection( x1, y1, x2, y2, slope, intercept )`
- Arguments:
- `x1`, `y1`, `x2`, `y2`: Numbers. Two x and y coordinates that lie on the line segment.
- `x3`, `y3`, `x4`, `y4`: Numbers. Two x and y coordinates that lie on the line.
- `slope`, `intercept`:
- Numbers. The slope and y-intercept of the the line.
- Booleans (`false`). The slope and y-intercept of the line (if the line is vertical).
- Returns:
- `x1`, `y1`, `x2`, `y2`:
- Number, Number, Number, Number.
- The points of the line segment if the line and segment are collinear.
- Number, Number, Boolean (`nil`), Boolean (`nil`).
- The coordinate of intersection if the line and segment intersect and are not collinear.
- Boolean (`false`), Boolean (`nil`), Boolean (`nil`),
- Boolean (`nil`). If the line and segment don't intersect.
##### mlib.line.getSlope
- Gives the slope of a line.
- Synopsis:
- `slope = mlib.line.getSlope( x1, y1, x2, y2 )
- Arguments:
- `x1`, `y1`, `x2`, `y2`: Numbers. Two x and y coordinates.
- Returns:
- `slope`:
- Number. The slope of the line.
- Boolean (`false`). The slope of the line (if the line is vertical).
#### mlib.segment
- Deals with line segments.
##### mlib.segment.checkPoint
- Checks if a point lies on a line segment.
- Synopsis:
- `onSegment = mlib.segment.checkPoint( px, py, x1 y1, x2, y2 )`
- Arguments:
- `px`, `py`: Numbers. The x and y coordinates of the point being checked.
- `x1`, `y1`, `x2`, `y2`: Numbers. Two x and y coordinates.
- Returns:
- `onSegment`: Boolean.
- `true` if the point lies on the line segment.
- `false` if the point does not lie on the line segment.
##### mlib.segment.getPerpendicularBisector
- Gives the perpendicular bisector of a line.
- Synopsis:
- `x, y, slope = mlib.segment.getPerpendicularBisector( x1, y1, x2, y2 )`
- Arguments:
- `x1`, `y1`, `x2`, `y2`: Numbers. Two x and y coordinates.
- Returns:
- `x`, `y`: Numbers. The midpoint of the line.
- `slope`:
- Number. The perpendicular slope of the line.
- Boolean (`false`). The perpendicular slope of the line (if the original line was horizontal).
##### mlib.segment.getIntersection
- Checks if two line segments intersect.
- Synopsis:
- `cx1, cy1, cx2, cy2 = mlib.segment.getIntersection( x1, y1, x2, y2, x3, y3 x4, y4 )`
- Arguments:
- `x1`, `y1`, `x2`, `y2`: Numbers. Two x and y coordinates of the first line segment.
- `x3`, `y3`, `x4`, `y4`: Numbers. Two x and y coordinates of the second line segment.
- Returns:
- `cx1`, `cy1`, `cx2`, `cy2`:
- Number, Number, Number, Number.
- The points of the resulting intersection if the line segments are collinear.
- Number, Number, Boolean (`nil`), Boolean (`nil`).
- The point of the resulting intersection if the line segments are not collinear.
- Boolean (`false`), Boolean (`nil`), Boolean (`nil`) , Boolean (`nil`).
- If the line segments don't intersect.
#### mlib.polygon
- Handles aspects involving polygons.
##### mlib.polygon.checkPoint
- Checks if a point is inside of a polygon.
- Synopses:
- `inPolygon = mlib.polygon.checkPoint( px, py, vertices )`
- `inPolygon = mlib.polygon.checkPoint( px, py, ... )`
- Arguments:
- `px`, `py`: Numbers. The x and y coordinate of the point being checked.
- `vertices`: Table. The vertices of the polygon in the format `{ x1, y1, x2, y2, x3, y3, ... }`
- `...`: Numbers. The x and y coordinates of the polygon. (Same as using `unpack( vertices )`)
- Returns:
- `inPolygon`: Boolean.
- `true` if the point is inside the polygon.
- `false` if the point is not inside the polygon.
##### mlib.polygon.getCentroid
- Returns the centroid of the polygon.
- Synopses:
- `cx, cy = mlib.polygon.getCentroid( vertices )`
- `cx, cy = mlib.polygon.getCentroid( ... )`
- Arguments:
- `vertices`: Table. The vertices of the polygon in the format `{ x1, y1, x2, y2, x3, y3, ... }`
- `...`: Numbers. The x and y coordinates of the polygon. (Same as using `unpack( vertices )`)
- Returns:
- `cx`, `cy`: Numbers. The x and y coordinates of the centroid.
##### mlib.polygon.getCircleIntersection
- Returns the coordinates of where a circle intersects a polygon.
- Synopses:
- `intersections = mlib.polygon.getCircleIntersection( cx, cy, radius, vertices )`
- `intersections = mlib.polygon.getCircleIntersection( cx, cy, radius, ... )
- Arguments:
- `cx`, `cy`: Number. The coordinates of the center of the circle.
- `radius`: Number. The radius of the circle.
- `vertices`: Table. The vertices of the polygon in the format `{ x1, y1, x2, y2, x3, y3, ... }`
- `...`: Numbers. The x and y coordinates of the polygon. (Same as using `unpack( vertices )`)
- Returns:
- `intersections`: Table. Contains the intersections and type.
- Example:
```lua
local tab = _.polygon.getCircleIntersection( 5, 5, 1, 4, 4, 6, 4, 6, 6, 4, 6 )
for i = 1, # tab do
print( i .. ':', unpack( tab[i] ) )
end
-- 1: tangent 5 4
-- 2: tangent 6 5
-- 3: tangent 5 6
-- 4: tagnent 4 5
```
- For more see [mlib.circle.getSegmentIntersection](#mlibcirclegetsegmentintersection) or the [specs](spec.lua# L676)
##### mlib.polygon.getLineIntersection
- Returns the coordinates of where a line intersects a polygon.
- Synopses:
- `intersections = mlib.polygon.getLineIntersection( x1, y1, x2, y2, vertices )`
- `intersections = mlib.polygon.getLineIntersection( x1, y1, x2, y2, ... )
- Arguments:
- `x1`, `y1`, `x2`, `y2`: Numbers. Two x and y coordinates.
- `vertices`: Table. The vertices of the polygon in the format `{ x1, y1, x2, y2, x3, y3, ... }`
- `...`: Numbers. The x and y coordinates of the polygon. (Same as using `unpack( vertices )`)
- Returns:
- `intersections`: Table. Contains the intersections.
- Notes:
- With collinear lines, they are actually broken up. i.e. `{ 0, 4, 0, 0 }` would become `{ 0, 4 }, { 0, 0 }`.
##### mlib.polygon.getPolygonArea
- Gives the area of a polygon.
- Synopses:
- `area = mlib.polygon.getArea( vertices )`
- `area = mlib.polygon.getArea( ... )
- Arguments:
- `vertices`: Table. The vertices of the polygon in the format `{ x1, y1, x2, y2, x3, y3, ... }`
- `...`: Numbers. The x and y coordinates of the polygon. (Same as using `unpack( vertices )`)
- Returns:
- `area`: Number. The area of the polygon.
##### mlib.polygon.getPolygonIntersection
- Gives the intersection of two polygons.
- Synopsis:
- `intersections = mlib.polygon.getPolygonIntersections( polygon1, polygon2 )`
- Arguments:
- `polygon1`: Table. The vertices of the first polygon in the format `{ x1, y1, x2, y2, x3, y3, ... }`
- `polygon2`: Table. The vertices of the second polygon in the format `{ x1, y1, x2, y2, x3, y3, ... }`
- Returns:
- `intersections`: Table. A table of the points of intersection.
##### mlib.polygon.getSegmentIntersection
- Returns the coordinates of where a line segmeing intersects a polygon.
- Synopses:
- `intersections = mlib.polygon.getSegmentIntersection( x1, y1, x2, y2, vertices )`
- `intersections = mlib.polygon.getSegmentIntersection( x1, y1, x2, y2, ... )
- Arguments:
- `x1`, `y1`, `x2`, `y2`: Numbers. Two x and y coordinates.
- `vertices`: Table. The vertices of the polygon in the format `{ x1, y1, x2, y2, x3, y3, ... }`
- `...`: Numbers. The x and y coordinates of the polygon. (Same as using `unpack( vertices )`)
- Returns:
- `intersections`: Table. Contains the intersections.
- Notes:
- With collinear line segments, they are __not__ broken up. See the [specs](spec.lua# L508) for more.
##### mlib.polygon.getSignedPolygonArea
- Gets the signed area of the polygon. If the points are ordered counter-clockwise the area is positive. If the points are ordered clockwise the number is negative.
- Synopses:
- `area = mlib.polygon.getLineIntersection( vertices )`
- `area = mlib.polygon.getLineIntersection( ... )
- Arguments:
- `vertices`: Table. The vertices of the polygon in the format `{ x1, y1, x2, y2, x3, y3, ... }`
- `...`: Numbers. The x and y coordinates of the polygon. (Same as using `unpack( vertices )`)
- Returns:
- `area`: Number. The __signed__ area of the polygon. If the points are ordered counter-clockwise the area is positive. If the points are ordered clockwise the number is negative.
##### mlib.polygon.getTriangleHeight
- Gives the height of a triangle.
- Synopses:
- `height = mlib.polygon.getTriangleHeigh( base, x1, y1, x2, y2, x3, y3 )`
- `height = mlib.polygon.getTriangleHeight( base, area )`
- Arguments:
- `base`: Number. The length of the base of the triangle.
- `x1`, `y1`, `x2`, `y2`, `x3`, `y3`: Numbers. The x and y coordinates of the triangle.
- `area`: Number. The regular area of the triangle. __Not__ the signed area.
- Returns:
- `height`: Number. The height of the triangle.
##### mlib.polygon.isCircleInside
- Checks if a circle is inside the polygon.
- Synopses:
- `inPolygon = mlib.polygon.isCircleInside( cx, cy, radius, vertices )`
- `inPolygon = mlib.polygon.isCircleInside( cx, cy, radius, ... )`
- Arguments:
- `cx`, `cy`: Numbers. The x and y coordinates for the center of the circle.
- `radius`: Number. The radius of the circle.
- `vertices`: Table. The vertices of the polygon in the format `{ x1, y1, x2, y2, x3, y3, ... }`
- `...`: Numbers. The x and y coordinates of the polygon. (Same as using `unpack( vertices )`)
- Returns:
- `inPolygon`: Boolean.
- `true` if the circle is inside the polygon.
- `false` if the circle is not inside the polygon.
- Notes:
- Only returns true if the center of the circle is inside the circle.
##### mlib.polygon.isCircleCompletelyInside
- Checks if a circle is completely inside the polygon.
- Synopses:
- `inPolygon = mlib.polygon.isCircleCompletelyInside( cx, cy, radius, vertices )`
- `inPolygon = mlib.polygon.isCircleCompletelyInside( cx, cy, radius, ... )`
- Arguments:
- `cx`, `cy`: Numbers. The x and y coordinates for the center of the circle.
- `radius`: Number. The radius of the circle.
- `vertices`: Table. The vertices of the polygon in the format `{ x1, y1, x2, y2, x3, y3, ... }`
- `...`: Numbers. The x and y coordinates of the polygon. (Same as using `unpack( vertices )`)
- Returns:
- `inPolygon`: Boolean.
- `true` if the circle is __completely__ inside the polygon.
- `false` if the circle is not inside the polygon.
##### mlib.polygon.isPolygonInside
- Checks if a polygon is inside a polygon.
- Synopsis:
- `inPolygon = mlib.polygon.isPolygonInside( polygon1, polygon2 )`
- Arguments:
- `polygon1`: Table. The vertices of the first polygon in the format `{ x1, y1, x2, y2, x3, y3, ... }`
- `polygon2`: Table. The vertices of the second polygon in the format `{ x1, y1, x2, y2, x3, y3, ... }`
- Returns:
- `inPolygon`: Boolean.
- `true` if the `polygon2` is inside of `polygon1`.
- `false` if `polygon2` is not inside of `polygon2`.
- Notes:
- Returns true as long as any of the line segments of `polygon2` are inside of the `polygon1`.
##### mlib.polygon.isPolygonCompletelyInside
- Checks if a polygon is completely inside a polygon.
- Synopsis:
- `inPolygon = mlib.polygon.isPolygonCompletelyInside( polygon1, polygon2 )`
- Arguments:
- `polygon1`: Table. The vertices of the first polygon in the format `{ x1, y1, x2, y2, x3, y3, ... }`
- `polygon2`: Table. The vertices of the second polygon in the format `{ x1, y1, x2, y2, x3, y3, ... }`
- Returns:
- `inPolygon`: Boolean.
- `true` if the `polygon2` is __completely__ inside of `polygon1`.
- `false` if `polygon2` is not inside of `polygon2`.
##### mlib.polygon.isSegmentInside
- Checks if a line segment is inside a polygon.
- Synopses:
- `inPolygon = mlib.polygon.isSegmentInside( x1, y1, x2, y2, vertices )`
- `inPolygon = mlib.polygon.isSegmentInside( x1, y1, x2, y2, ... )`
- Arguments:
- `x1`, `y1`, `x2`, `y2`: Numbers. The x and y coordinates of the line segment.
- `vertices`: Table. The vertices of the polygon in the format `{ x1, y1, x2, y2, x3, y3, ... }`
- `...`: Numbers. The x and y coordinates of the polygon. (Same as using `unpack( vertices )`)
- Returns:
- `inPolygon`: Boolean.
- `true` if the line segment is inside the polygon.
- `false` if the line segment is not inside the polygon.
- Note:
- Only one of the points has to be in the polygon to be considered 'inside' of the polygon.
- This is really just a faster version of [mlib.polygon.getPolygonIntersection](#mlibpolygongetpolygonintersection) that does not give the points of intersection.
##### mlib.polygon.isSegmentCompletelyInside
- Checks if a line segment is completely inside a polygon.
- Synopses:
- `inPolygon = mlib.polygon.isSegmentCompletelyInside( x1, y1, x2, y2, vertices )`
- `inPolygon = mlib.polygon.isSegmentCompletelyInside( x1, y1, x2, y2, ... )`
- Arguments:
- `x1`, `y1`, `x2`, `y2`: Numbers. The x and y coordinates of the line segment.
- `vertices`: Table. The vertices of the polygon in the format `{ x1, y1, x2, y2, x3, y3, ... }`
- `...`: Numbers. The x and y coordinates of the polygon. (Same as using `unpack( vertices )`)
- Returns:
- `inPolygon`: Boolean.
- `true` if the line segment is __completely__ inside the polygon.
- `false` if the line segment is not inside the polygon.
#### mlib.circle
- Handles aspects involving circles.
##### mlib.circle.checkPoint
- Checks if a point is on the inside or on the edge the circle.
- Synopsis:
- `inCircle = mlib.circle.checkPoint( px, px, cx, cy, radius )`
- Arguments:
- `px`, `py`: Numbers. The x and y coordinates of the point being tested.
- `cx`, `cy`: Numbers. The x and y coordinates of the center of the circle.
- `radius`: Number. The radius of the circle.
- Returns:
- `inCircle`: Boolean.
- `true` if the point is inside or on the circle.
- `false` if the point is outside of the circle.
##### mlib.circle.getArea
- Gives the area of a circle.
- Synopsis:
- `area = mlib.circle.getArea( radius )`
- Arguments:
- `radius`: Number. The radius of the circle.
- Returns:
- `area`: Number. The area of the circle.
##### mlib.circle.getCircleIntersection
- Gives the intersections of two circles.
- Synopsis:
- `intersections = mlib.circle.getCircleIntersection( c1x, c1y, radius1, c2x, c2y, radius2 )
- Arguments:
- `c1x`, `c1y`: Numbers. The x and y coordinate of the first circle.
- `radius1`: Number. The radius of the first circle.
- `c2x`, `c2y`: Numbers. The x and y coordinate of the second circle.
- `radius2`: Number. The radius of the second circle.
- Returns:
- `intersections`: Table. A table that contains the type and where the circle collides. See the [specs](spec.lua# L698) for more.
##### mlib.circle.getCircumference
- Returns the circumference of a circle.
- Synopsis:
- `circumference = mlib.circle.getCircumference( radius )`
- Arguments:
- `radius`: Number. The radius of the circle.
- Returns:
- `circumference`: Number. The circumference of a circle.
##### mlib.circle.getLineIntersection
- Returns the intersections of a circle and a line.
- Synopsis:
- `intersections = mlib.circle.getLineIntersections( cx, cy, radius, x1, y1, x2, y2 )`
- Arguments:
- `cx`, `cy`: Numbers. The x and y coordinates for the center of the circle.
- `radius`: Number. The radius of the circle.
- `x1`, `y1`, `x2`, `y2`: Numbers. Two x and y coordinates the lie on the line.
- Returns:
- `intersections`: Table. A table with the type and where the intersections happened. Table is formatted:
- `type`, `x1`, `y1`, `x2`, `y2`
- String (`'secant'`), Number, Number, Number, Number
- The numbers are the x and y coordinates where the line intersects the circle.
- String (`'tangent'`), Number, Number, Boolean (`nil`), Boolean (`nil`)
- `x1` and `x2` represent where the line intersects the circle.
- Boolean (`false`), Boolean (`nil`), Boolean (`nil`), Boolean (`nil`), Boolean (`nil`)
- No intersection.
- For more see the [specs](spec.lua# L660).
##### mlib.circle.getSegmentIntersection
- Returns the intersections of a circle and a line segment.
- Synopsis:
- `intersections = mlib.circle.getSegmentIntersections( cx, cy, radius, x1, y1, x2, y2 )`
- Arguments:
- `cx`, `cy`: Numbers. The x and y coordinates for the center of the circle.
- `radius`: Number. The radius of the circle.
- `x1`, `y1`, `x2`, `y2`: Numbers. The two x and y coordinates of the line segment.
- Returns:
- `intersections`: Table. A table with the type and where the intersections happened. Table is formatted:
- `type`, `x1`, `y1`, `x2`, `y2`
- String (`'chord'`), Number, Number, Number, Number
- The numbers are the x and y coordinates where the line segment is on both edges of the circle.
- String (`'enclosed'`), Number, Number, Number, Number
- The numbers are the x and y coordinates of the line segment if it is fully inside of the circle.
- String (`'secant'`), Number, Number, Number, Number
- The numbers are the x and y coordinates where the line segment intersects the circle.
- String (`'tangent'`), Number, Number, Boolean (`nil`), Boolean (`nil`)
- `x1` and `x2` represent where the line segment intersects the circle.
- Boolean (`false`), Boolean (`nil`), Boolean (`nil`), Boolean (`nil`), Boolean (`nil`)
- No intersection.
- For more see the [specs](spec.lua# L676).
##### mlib.circle.isCircleCompletelyInside
- Checks if one circle is completely inside of another circle.
- Synopsis:
- `completelyInside = mlib.circle.isCircleCompletelyInside( c1x, c1y, c1radius, c2x, c2y, c2radius )`
- Arguments:
- `c1x`, `c1y`: Numbers. The x and y coordinates of the first circle.
- `c1radius`: Number. The radius of the first circle.
- `c2x`, `c2y`: Numbers. The x and y coordinates of the second circle.
- `c2radius`: Number. The radius of the second circle.
- Returns:
- `completelyInside`: Boolean.
- `true` if circle1 is inside of circle2.
- `false` if circle1 is not __completely__ inside of circle2.
##### mlib.circle.isCircleCompletelyInsidePolygon
- Checks if a circle is completely inside the polygon.
- Synopses:
- `inPolygon = mlib.polygon.isCircleCompletelyInside( cx, cy, radius, vertices )`
- `inPolygon = mlib.polygon.isCircleCompletelyInside( cx, cy, radius, ... )`
- Arguments:
- `cx`, `cy`: Numbers. The x and y coordinates for the center of the circle.
- `radius`: Number. The radius of the circle.
- `vertices`: Table. The vertices of the polygon in the format `{ x1, y1, x2, y2, x3, y3, ... }`
- `...`: Numbers. The x and y coordinates of the polygon. (Same as using `unpack( vertices )`)
- Returns:
- `inPolygon`: Boolean.
- `true` if the circle is __completely__ inside the polygon.
- `false` if the circle is not inside the polygon.
##### mlib.circle.isPointOnCircle
- Checks if a point is __exactly__ on the edge of the circle.
- Synopsis:
- `onCircle = mlib.circle.checkPoint( px, px, cx, cy, radius )`
- Arguments:
- `px`, `py`: Numbers. The x and y coordinates of the point being tested.
- `cx`, `cy`: Numbers. The x and y coordinates of the center of the circle.
- `radius`: Number. The radius of the circle.
- Returns:
- `onCircle`: Boolean.
- `true` if the point is on the circle.
- `false` if the point is on the inside or outside of the circle.
- Notes:
- Will return false if the point is inside __or__ outside of the circle.
##### mlib.circle.isPolygonCompletelyInside
- Checks if a polygon is completely inside of a circle.
- Synopsis:
- `completelyInside = mlib.circle.isPolygonCompletelyInside( circleX, circleY, circleRadius, vertices )`
- `completelyInside = mlib.circle.isPolygonCompletelyInside( circleX, circleY, circleRadius, ... )`
- Arguments:
- `circleX`, `circleY`: Numbers. The x and y coordinates of the circle.
- `circleRadius`: Number. The radius of the circle.
- `vertices`: Table. A table containing all of the vertices of the polygon.
- `...`: Numbers. All of the points of the polygon.
- Returns:
- `completelyInside`: Boolean.
- `true` if the polygon is inside of the circle.
- `false` if the polygon is not __completely__ inside of the circle.
#### mlib.statistics
- Handles statistical aspects of math.
##### mlib.statistics.getCentralTendency
- Gets the central tendency of the data.
- Synopses:
- `modes, occurrences, median, mean = mlib.statistics.getCentralTendency( data )`
- `modes, occurrences, median, mean = mlib.statistics.getCentralTendency( ... )`
- Arguments:
- `data`: Table. A table containing the values of data.
- `...`: Numbers. All of the numbers in the data set.
- Returns:
- `modes, occurrences`: Table, Number. The modes of the data and the number of times it occurs. See [mlib.statistics.getMode](#mlibstatisticsgetmode).
- `median`: Number. The median of the data set.
- `mean`: Number. The mean of the data set.
##### mlib.statistics.getDispersion
- Gets the dispersion of the data.
- Synopses:
- `variationRatio, range, standardDeviation = mlib.statistics.getDispersion( data )`
- `variationRatio, range, standardDeviation = mlib.statistics.getDispersion( ... )`
- Arguments:
- `data`: Table. A table containing the values of data.
- `...`: Numbers. All of the numbers in the data set.
- Returns:
- `variationRatio`: Number. The variation ratio of the data set.
- `range`: Number. The range of the data set.
- `standardDeviation`: Number. The standard deviation of the data set.
##### mlib.statistics.getMean
- Gets the arithmetic mean of the data.
- Synopses:
- `mean = mlib.statistics.getMean( data )`
- `mean = mlib.statistics.getMean( ... )`
- Arguments:
- `data`: Table. A table containing the values of data.
- `...`: Numbers. All of the numbers in the data set.
- Returns:
- `mean`: Number. The arithmetic mean of the data set.
##### mlib.statistics.getMedian
- Gets the median of the data set.
- Synopses:
- `median = mlib.statistics.getMedian( data )`
- `median = mlib.statistics.getMedian( ... )`
- Arguments:
- `data`: Table. A table containing the values of data.
- `...`: Numbers. All of the numbers in the data set.
- Returns:
- `median`: Number. The median of the data.
##### mlib.statistics.getMode
- Gets the mode of the data set.
- Synopses:
- `mode, occurrences = mlib.statistics.getMode( data )`
- `mode, occurrences = mlib.statistics.getMode( ... )`
- Arguments:
- `data`: Table. A table containing the values of data.
- `...`: Numbers. All of the numbers in the data set.
- Returns:
- `mode`: Table. The mode(s) of the data.
- `occurrences`: Number. The number of time the mode(s) occur.
##### mlib.statistics.getRange
- Gets the range of the data set.
- Synopses:
- `range = mlib.statistics.getRange( data )`
- `range = mlib.statistics.getRange( ... )`
- Arguments:
- `data`: Table. A table containing the values of data.
- `...`: Numbers. All of the numbers in the data set.
- Returns:
- `range`: Number. The range of the data.
##### mlib.statistics.getStandardDeviation
- Gets the standard deviation of the data.
- Synopses:
- `standardDeviation = mlib.statistics.getStandardDeviation( data )`
- `standardDeviation = mlib.statistics.getStandardDeviation( ... )`
- Arguments:
- `data`: Table. A table containing the values of data.
- `...`: Numbers. All of the numbers in the data set.
- Returns:
- `standardDeviation`: Number. The standard deviation of the data set.
##### mlib.statistics.getVariance
- Gets the variation of the data.
- Synopses:
- `variance = mlib.statistics.getVariance( data )`
- `variance = mlib.statistics.getVariance( ... )`
- Arguments:
- `data`: Table. A table containing the values of data.
- `...`: Numbers. All of the numbers in the data set.
- Returns:
- `variance`: Number. The variation of the data set.
##### mlib.statistics.getVariationRatio
- Gets the variation ratio of the data.
- Synopses:
- `variationRatio = mlib.statistics.getVariationRatio( data )`
- `variationRatio = mlib.statistics.getVariationRatio( ... )`
- Arguments:
- `data`: Table. A table containing the values of data.
- `...`: Numbers. All of the numbers in the data set.
- Returns:
- `variationRatio`: Number. The variation ratio of the data set.
#### mlib.math
- Miscellaneous functions that have no home.
##### mlib.math.getAngle
- Gets the angle between three points.
- Synopsis:
- `angle = mlib.math.getAngle( x1, y1, x2, y2, x3, y3 )`
- Arguments:
- `x1`, `y1`: Numbers. The x and y coordinates of the first point.
- `x2`, `y2`: Numbers. The x and y coordinates of the vertex of the two points.
- `x3`, `y3`: Numbers. The x and y coordinates of the second point.
##### mlib.math.getPercentage
- Gets the percentage of a number.
- Synopsis:
- `percentage = mlib.math.getPercentage( percent, number )`
- Arguments:
- `percent`: Number. The decimal value of the percent (i.e. 100% is 1, 50% is .5).
- `number`: Number. The number to get the percentage of.
- Returns:
- `percentage`: Number. The `percent`age or `number`.
##### mlib.math.getPercentOfChange
- Gets the percent of change from one to another.
- Synopsis:
- `change = mlib.math.getPercentOfChange( old, new )`
- Arguments:
- `old`: Number. The original number.
- `new`: Number. The new number.
- Returns:
- `change`: Number. The percent of change from `old` to `new`.
##### mlib.math.getQuadraticRoots
- Gets the quadratic roots of the the equation.
- Synopsis:
- `root1, root2 = mlib.math.getQuadraticRoots( a, b, c )`
- Arguments:
- `a`, `b`, `c`: Numbers. The a, b, and c values of the equation `a * x ^ 2 + b * x ^ 2 + c`.
- Returns:
- `root1`, `root2`: Numbers. The roots of the equation (where `a * x ^ 2 + b * x ^ 2 + c = 0`).
##### mlib.math.getRoot
- Gets the `n`th root of a number.
- Synopsis:
- `x = mlib.math.getRoot( number, root )`
- Arguments:
- `number`: Number. The number to get the root of.
- `root`: Number. The root.
- Returns:
- `x`: The `root`th root of `number`.
- Example:
```lua
local a = mlib.math.getRoot( 4, 2 ) -- Same as saying 'math.pow( 4, .5 )' or 'math.sqrt( 4 )' in this case.
local b = mlib.math.getRoot( 27, 3 )
print( a, b ) --> 2, 3
```
- For more, see the [specs](spec.lua# L860).
##### mlib.math.getSummation
- Gets the summation of numbers.
- Synopsis:
- `summation = mlib.math.getSummation( start, stop, func )`
- Arguments:
- `start`: Number. The number at which to start the summation.
- `stop`: Number. The number at which to stop the summation.
- `func`: Function. The method to add the numbers.
- Arguments:
- `i`: Number. Index.
- `previous`: Table. The previous values used.
- Returns:
- `Summation`: Number. The summation of the numbers.
- For more, see the [specs](spec.lua# L897).
##### mlib.math.isPrime
- Checks if a number is prime.
- Synopsis:
- `isPrime = mlib.math.isPrime( x )`
- Arguments:
- `x`: Number. The number to check if it's prime.
- Returns:
- `isPrime`: Boolean.
- `true` if the number is prime.
- `false` if the number is not prime.
##### mlib.math.round
- Rounds a number to the given decimal place.
- Synopsis:
- `rounded = mlib.math.round( number, [place] )
- Arguments:
- `number`: Number. The number to round.
- `place (1)`: Number. The decimal place to round to. Defaults to 1.
- Returns:
- The rounded number.
- For more, see the [specs](spec.lua# L881).
#### Aliases
| Alias | Corresponding Function |
| ----------------------------------------------|:---------------------------------------------------------------------------------:|
| milb.line.getDistance | [mlib.line.getLength](#mliblinegetlength) |
| mlib.line.getCircleIntersection | [mlib.circle.getLineIntersection](#mlibcirclegetlineintersection) |
| milb.line.getPolygonIntersection | [mlib.polygon.getLineIntersection](#mlibpolygongetlineintersection) |
| mlib.line.getLineIntersection | [mlib.line.getIntersection](#mliblinegetintersection) |
| mlib.segment.getCircleIntersection | [mlib.circle.getSegmentIntersection](#mlibcirclegetsegmentintersection) |
| milb.segment.getPolygonIntersection | [mlib.pollygon.getSegmentIntersection](#mlibpollygongetsegmentintersection) |
| mlib.segment.getLineIntersection | [mlib.line.getSegmentIntersection](#mliblinegetsegmentintersection) |
| mlib.segment.getSegmentIntersection | [mlib.segment.getIntersection](#mlibsegmentgetintersection) |
| milb.segment.isSegmentCompletelyInsideCircle | [mlib.circle.isSegmentCompletelyInside](#mlibcircleissegmentcompletelyinside) |
| mlib.segment.isSegmentCompletelyInsidePolygon | [mlib.polygon.isSegmentCompletelyInside](#mlibpolygonissegmentcompletelyinside) |
| mlib.circle.getPolygonIntersection | [mlib.polygon.getCircleIntersection](#mlibpolygongetcircleintersection) |
| mlib.circle.isCircleInsidePolygon | [mlib.polygon.isCircleInside](#mlibpolygoniscircleinside) |
| mlib.circle.isCircleCompletelyInsidePolygon | [mlib.polygon.isCircleCompletelyInside](#mlibpolygoniscirclecompletelyinside) |
| mlib.polygon.isCircleCompletelyOver | [mlib.circleisPolygonCompletelyInside](#mlibcircleispolygoncompletelyinside) |
## License
A math library made in Lua
copyright (C) 2014 Davis Claiborne
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
Contact me at davisclaib at gmail.com
|