diff options
author | Indrajith K L | 2022-12-03 17:00:20 +0530 |
---|---|---|
committer | Indrajith K L | 2022-12-03 17:00:20 +0530 |
commit | f5c4671bfbad96bf346bd7e9a21fc4317b4959df (patch) | |
tree | 2764fc62da58f2ba8da7ed341643fc359873142f /v_windows/v/old/vlib/math/bits/bits.v | |
download | cli-tools-windows-master.tar.gz cli-tools-windows-master.tar.bz2 cli-tools-windows-master.zip |
Diffstat (limited to 'v_windows/v/old/vlib/math/bits/bits.v')
-rw-r--r-- | v_windows/v/old/vlib/math/bits/bits.v | 478 |
1 files changed, 478 insertions, 0 deletions
diff --git a/v_windows/v/old/vlib/math/bits/bits.v b/v_windows/v/old/vlib/math/bits/bits.v new file mode 100644 index 0000000..a3d2220 --- /dev/null +++ b/v_windows/v/old/vlib/math/bits/bits.v @@ -0,0 +1,478 @@ +// Copyright (c) 2019-2021 Alexander Medvednikov. All rights reserved. +// Use of this source code is governed by an MIT license +// that can be found in the LICENSE file. +module bits + +const ( + // See http://supertech.csail.mit.edu/papers/debruijn.pdf + de_bruijn32 = u32(0x077CB531) + de_bruijn32tab = [byte(0), 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8, 31, 27, 13, + 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9] + de_bruijn64 = u64(0x03f79d71b4ca8b09) + de_bruijn64tab = [byte(0), 1, 56, 2, 57, 49, 28, 3, 61, 58, 42, 50, 38, 29, 17, 4, 62, 47, + 59, 36, 45, 43, 51, 22, 53, 39, 33, 30, 24, 18, 12, 5, 63, 55, 48, 27, 60, 41, 37, 16, + 46, 35, 44, 21, 52, 32, 23, 11, 54, 26, 40, 15, 34, 20, 31, 10, 25, 14, 19, 9, 13, 8, 7, + 6, + ] +) + +const ( + m0 = u64(0x5555555555555555) // 01010101 ... + m1 = u64(0x3333333333333333) // 00110011 ... + m2 = u64(0x0f0f0f0f0f0f0f0f) // 00001111 ... + m3 = u64(0x00ff00ff00ff00ff) // etc. + m4 = u64(0x0000ffff0000ffff) +) + +const ( + // save importing math mod just for these + max_u32 = u32(4294967295) + max_u64 = u64(18446744073709551615) +) + +// --- LeadingZeros --- +// leading_zeros_8 returns the number of leading zero bits in x; the result is 8 for x == 0. +pub fn leading_zeros_8(x byte) int { + return 8 - len_8(x) +} + +// leading_zeros_16 returns the number of leading zero bits in x; the result is 16 for x == 0. +pub fn leading_zeros_16(x u16) int { + return 16 - len_16(x) +} + +// leading_zeros_32 returns the number of leading zero bits in x; the result is 32 for x == 0. +pub fn leading_zeros_32(x u32) int { + return 32 - len_32(x) +} + +// leading_zeros_64 returns the number of leading zero bits in x; the result is 64 for x == 0. +pub fn leading_zeros_64(x u64) int { + return 64 - len_64(x) +} + +// --- TrailingZeros --- +// trailing_zeros_8 returns the number of trailing zero bits in x; the result is 8 for x == 0. +pub fn trailing_zeros_8(x byte) int { + return int(ntz_8_tab[x]) +} + +// trailing_zeros_16 returns the number of trailing zero bits in x; the result is 16 for x == 0. +pub fn trailing_zeros_16(x u16) int { + if x == 0 { + return 16 + } + // see comment in trailing_zeros_64 + return int(bits.de_bruijn32tab[u32(x & -x) * bits.de_bruijn32 >> (32 - 5)]) +} + +// trailing_zeros_32 returns the number of trailing zero bits in x; the result is 32 for x == 0. +pub fn trailing_zeros_32(x u32) int { + if x == 0 { + return 32 + } + // see comment in trailing_zeros_64 + return int(bits.de_bruijn32tab[(x & -x) * bits.de_bruijn32 >> (32 - 5)]) +} + +// trailing_zeros_64 returns the number of trailing zero bits in x; the result is 64 for x == 0. +pub fn trailing_zeros_64(x u64) int { + if x == 0 { + return 64 + } + // If popcount is fast, replace code below with return popcount(^x & (x - 1)). + // + // x & -x leaves only the right-most bit set in the word. Let k be the + // index of that bit. Since only a single bit is set, the value is two + // to the power of k. Multiplying by a power of two is equivalent to + // left shifting, in this case by k bits. The de Bruijn (64 bit) constant + // is such that all six bit, consecutive substrings are distinct. + // Therefore, if we have a left shifted version of this constant we can + // find by how many bits it was shifted by looking at which six bit + // substring ended up at the top of the word. + // (Knuth, volume 4, section 7.3.1) + return int(bits.de_bruijn64tab[(x & -x) * bits.de_bruijn64 >> (64 - 6)]) +} + +// --- OnesCount --- +// ones_count_8 returns the number of one bits ("population count") in x. +pub fn ones_count_8(x byte) int { + return int(pop_8_tab[x]) +} + +// ones_count_16 returns the number of one bits ("population count") in x. +pub fn ones_count_16(x u16) int { + return int(pop_8_tab[x >> 8] + pop_8_tab[x & u16(0xff)]) +} + +// ones_count_32 returns the number of one bits ("population count") in x. +pub fn ones_count_32(x u32) int { + return int(pop_8_tab[x >> 24] + pop_8_tab[x >> 16 & 0xff] + pop_8_tab[x >> 8 & 0xff] + + pop_8_tab[x & u32(0xff)]) +} + +// ones_count_64 returns the number of one bits ("population count") in x. +pub fn ones_count_64(x u64) int { + // Implementation: Parallel summing of adjacent bits. + // See "Hacker's Delight", Chap. 5: Counting Bits. + // The following pattern shows the general approach: + // + // x = x>>1&(m0&m) + x&(m0&m) + // x = x>>2&(m1&m) + x&(m1&m) + // x = x>>4&(m2&m) + x&(m2&m) + // x = x>>8&(m3&m) + x&(m3&m) + // x = x>>16&(m4&m) + x&(m4&m) + // x = x>>32&(m5&m) + x&(m5&m) + // return int(x) + // + // Masking (& operations) can be left away when there's no + // danger that a field's sum will carry over into the next + // field: Since the result cannot be > 64, 8 bits is enough + // and we can ignore the masks for the shifts by 8 and up. + // Per "Hacker's Delight", the first line can be simplified + // more, but it saves at best one instruction, so we leave + // it alone for clarity. + mut y := (x >> u64(1) & (bits.m0 & bits.max_u64)) + (x & (bits.m0 & bits.max_u64)) + y = (y >> u64(2) & (bits.m1 & bits.max_u64)) + (y & (bits.m1 & bits.max_u64)) + y = ((y >> 4) + y) & (bits.m2 & bits.max_u64) + y += y >> 8 + y += y >> 16 + y += y >> 32 + return int(y) & ((1 << 7) - 1) +} + +// --- RotateLeft --- +// rotate_left_8 returns the value of x rotated left by (k mod 8) bits. +// To rotate x right by k bits, call rotate_left_8(x, -k). +// +// This function's execution time does not depend on the inputs. +[inline] +pub fn rotate_left_8(x byte, k int) byte { + n := byte(8) + s := byte(k) & (n - byte(1)) + return ((x << s) | (x >> (n - s))) +} + +// rotate_left_16 returns the value of x rotated left by (k mod 16) bits. +// To rotate x right by k bits, call rotate_left_16(x, -k). +// +// This function's execution time does not depend on the inputs. +[inline] +pub fn rotate_left_16(x u16, k int) u16 { + n := u16(16) + s := u16(k) & (n - u16(1)) + return ((x << s) | (x >> (n - s))) +} + +// rotate_left_32 returns the value of x rotated left by (k mod 32) bits. +// To rotate x right by k bits, call rotate_left_32(x, -k). +// +// This function's execution time does not depend on the inputs. +[inline] +pub fn rotate_left_32(x u32, k int) u32 { + n := u32(32) + s := u32(k) & (n - u32(1)) + return ((x << s) | (x >> (n - s))) +} + +// rotate_left_64 returns the value of x rotated left by (k mod 64) bits. +// To rotate x right by k bits, call rotate_left_64(x, -k). +// +// This function's execution time does not depend on the inputs. +[inline] +pub fn rotate_left_64(x u64, k int) u64 { + n := u64(64) + s := u64(k) & (n - u64(1)) + return ((x << s) | (x >> (n - s))) +} + +// --- Reverse --- +// reverse_8 returns the value of x with its bits in reversed order. +[inline] +pub fn reverse_8(x byte) byte { + return rev_8_tab[x] +} + +// reverse_16 returns the value of x with its bits in reversed order. +[inline] +pub fn reverse_16(x u16) u16 { + return u16(rev_8_tab[x >> 8]) | (u16(rev_8_tab[x & u16(0xff)]) << 8) +} + +// reverse_32 returns the value of x with its bits in reversed order. +[inline] +pub fn reverse_32(x u32) u32 { + mut y := ((x >> u32(1) & (bits.m0 & bits.max_u32)) | ((x & (bits.m0 & bits.max_u32)) << 1)) + y = ((y >> u32(2) & (bits.m1 & bits.max_u32)) | ((y & (bits.m1 & bits.max_u32)) << u32(2))) + y = ((y >> u32(4) & (bits.m2 & bits.max_u32)) | ((y & (bits.m2 & bits.max_u32)) << u32(4))) + return reverse_bytes_32(u32(y)) +} + +// reverse_64 returns the value of x with its bits in reversed order. +[inline] +pub fn reverse_64(x u64) u64 { + mut y := ((x >> u64(1) & (bits.m0 & bits.max_u64)) | ((x & (bits.m0 & bits.max_u64)) << 1)) + y = ((y >> u64(2) & (bits.m1 & bits.max_u64)) | ((y & (bits.m1 & bits.max_u64)) << 2)) + y = ((y >> u64(4) & (bits.m2 & bits.max_u64)) | ((y & (bits.m2 & bits.max_u64)) << 4)) + return reverse_bytes_64(y) +} + +// --- ReverseBytes --- +// reverse_bytes_16 returns the value of x with its bytes in reversed order. +// +// This function's execution time does not depend on the inputs. +[inline] +pub fn reverse_bytes_16(x u16) u16 { + return (x >> 8) | (x << 8) +} + +// reverse_bytes_32 returns the value of x with its bytes in reversed order. +// +// This function's execution time does not depend on the inputs. +[inline] +pub fn reverse_bytes_32(x u32) u32 { + y := ((x >> u32(8) & (bits.m3 & bits.max_u32)) | ((x & (bits.m3 & bits.max_u32)) << u32(8))) + return u32((y >> 16) | (y << 16)) +} + +// reverse_bytes_64 returns the value of x with its bytes in reversed order. +// +// This function's execution time does not depend on the inputs. +[inline] +pub fn reverse_bytes_64(x u64) u64 { + mut y := ((x >> u64(8) & (bits.m3 & bits.max_u64)) | ((x & (bits.m3 & bits.max_u64)) << u64(8))) + y = ((y >> u64(16) & (bits.m4 & bits.max_u64)) | ((y & (bits.m4 & bits.max_u64)) << u64(16))) + return (y >> 32) | (y << 32) +} + +// --- Len --- +// len_8 returns the minimum number of bits required to represent x; the result is 0 for x == 0. +pub fn len_8(x byte) int { + return int(len_8_tab[x]) +} + +// len_16 returns the minimum number of bits required to represent x; the result is 0 for x == 0. +pub fn len_16(x u16) int { + mut y := x + mut n := 0 + if y >= 1 << 8 { + y >>= 8 + n = 8 + } + return n + int(len_8_tab[y]) +} + +// len_32 returns the minimum number of bits required to represent x; the result is 0 for x == 0. +pub fn len_32(x u32) int { + mut y := x + mut n := 0 + if y >= (1 << 16) { + y >>= 16 + n = 16 + } + if y >= (1 << 8) { + y >>= 8 + n += 8 + } + return n + int(len_8_tab[y]) +} + +// len_64 returns the minimum number of bits required to represent x; the result is 0 for x == 0. +pub fn len_64(x u64) int { + mut y := x + mut n := 0 + if y >= u64(1) << u64(32) { + y >>= 32 + n = 32 + } + if y >= u64(1) << u64(16) { + y >>= 16 + n += 16 + } + if y >= u64(1) << u64(8) { + y >>= 8 + n += 8 + } + return n + int(len_8_tab[y]) +} + +// --- Add with carry --- +// Add returns the sum with carry of x, y and carry: sum = x + y + carry. +// The carry input must be 0 or 1; otherwise the behavior is undefined. +// The carryOut output is guaranteed to be 0 or 1. +// +// add_32 returns the sum with carry of x, y and carry: sum = x + y + carry. +// The carry input must be 0 or 1; otherwise the behavior is undefined. +// The carryOut output is guaranteed to be 0 or 1. +// +// This function's execution time does not depend on the inputs. +pub fn add_32(x u32, y u32, carry u32) (u32, u32) { + sum64 := u64(x) + u64(y) + u64(carry) + sum := u32(sum64) + carry_out := u32(sum64 >> 32) + return sum, carry_out +} + +// add_64 returns the sum with carry of x, y and carry: sum = x + y + carry. +// The carry input must be 0 or 1; otherwise the behavior is undefined. +// The carryOut output is guaranteed to be 0 or 1. +// +// This function's execution time does not depend on the inputs. +pub fn add_64(x u64, y u64, carry u64) (u64, u64) { + sum := x + y + carry + // The sum will overflow if both top bits are set (x & y) or if one of them + // is (x | y), and a carry from the lower place happened. If such a carry + // happens, the top bit will be 1 + 0 + 1 = 0 (&^ sum). + carry_out := ((x & y) | ((x | y) & ~sum)) >> 63 + return sum, carry_out +} + +// --- Subtract with borrow --- +// Sub returns the difference of x, y and borrow: diff = x - y - borrow. +// The borrow input must be 0 or 1; otherwise the behavior is undefined. +// The borrowOut output is guaranteed to be 0 or 1. +// +// sub_32 returns the difference of x, y and borrow, diff = x - y - borrow. +// The borrow input must be 0 or 1; otherwise the behavior is undefined. +// The borrowOut output is guaranteed to be 0 or 1. +// +// This function's execution time does not depend on the inputs. +pub fn sub_32(x u32, y u32, borrow u32) (u32, u32) { + diff := x - y - borrow + // The difference will underflow if the top bit of x is not set and the top + // bit of y is set (^x & y) or if they are the same (^(x ^ y)) and a borrow + // from the lower place happens. If that borrow happens, the result will be + // 1 - 1 - 1 = 0 - 0 - 1 = 1 (& diff). + borrow_out := ((~x & y) | (~(x ^ y) & diff)) >> 31 + return diff, borrow_out +} + +// sub_64 returns the difference of x, y and borrow: diff = x - y - borrow. +// The borrow input must be 0 or 1; otherwise the behavior is undefined. +// The borrowOut output is guaranteed to be 0 or 1. +// +// This function's execution time does not depend on the inputs. +pub fn sub_64(x u64, y u64, borrow u64) (u64, u64) { + diff := x - y - borrow + // See Sub32 for the bit logic. + borrow_out := ((~x & y) | (~(x ^ y) & diff)) >> 63 + return diff, borrow_out +} + +// --- Full-width multiply --- +const ( + two32 = u64(0x100000000) + mask32 = two32 - 1 + overflow_error = 'Overflow Error' + divide_error = 'Divide Error' +) + +// mul_32 returns the 64-bit product of x and y: (hi, lo) = x * y +// with the product bits' upper half returned in hi and the lower +// half returned in lo. +// +// This function's execution time does not depend on the inputs. +pub fn mul_32(x u32, y u32) (u32, u32) { + tmp := u64(x) * u64(y) + hi := u32(tmp >> 32) + lo := u32(tmp) + return hi, lo +} + +// mul_64 returns the 128-bit product of x and y: (hi, lo) = x * y +// with the product bits' upper half returned in hi and the lower +// half returned in lo. +// +// This function's execution time does not depend on the inputs. +pub fn mul_64(x u64, y u64) (u64, u64) { + x0 := x & bits.mask32 + x1 := x >> 32 + y0 := y & bits.mask32 + y1 := y >> 32 + w0 := x0 * y0 + t := x1 * y0 + (w0 >> 32) + mut w1 := t & bits.mask32 + w2 := t >> 32 + w1 += x0 * y1 + hi := x1 * y1 + w2 + (w1 >> 32) + lo := x * y + return hi, lo +} + +// --- Full-width divide --- +// div_32 returns the quotient and remainder of (hi, lo) divided by y: +// quo = (hi, lo)/y, rem = (hi, lo)%y with the dividend bits' upper +// half in parameter hi and the lower half in parameter lo. +// div_32 panics for y == 0 (division by zero) or y <= hi (quotient overflow). +pub fn div_32(hi u32, lo u32, y u32) (u32, u32) { + if y != 0 && y <= hi { + panic(bits.overflow_error) + } + z := (u64(hi) << 32) | u64(lo) + quo := u32(z / u64(y)) + rem := u32(z % u64(y)) + return quo, rem +} + +// div_64 returns the quotient and remainder of (hi, lo) divided by y: +// quo = (hi, lo)/y, rem = (hi, lo)%y with the dividend bits' upper +// half in parameter hi and the lower half in parameter lo. +// div_64 panics for y == 0 (division by zero) or y <= hi (quotient overflow). +pub fn div_64(hi u64, lo u64, y1 u64) (u64, u64) { + mut y := y1 + if y == 0 { + panic(bits.overflow_error) + } + if y <= hi { + panic(bits.overflow_error) + } + s := u32(leading_zeros_64(y)) + y <<= s + yn1 := y >> 32 + yn0 := y & bits.mask32 + un32 := (hi << s) | (lo >> (64 - s)) + un10 := lo << s + un1 := un10 >> 32 + un0 := un10 & bits.mask32 + mut q1 := un32 / yn1 + mut rhat := un32 - q1 * yn1 + for q1 >= bits.two32 || q1 * yn0 > bits.two32 * rhat + un1 { + q1-- + rhat += yn1 + if rhat >= bits.two32 { + break + } + } + un21 := un32 * bits.two32 + un1 - q1 * y + mut q0 := un21 / yn1 + rhat = un21 - q0 * yn1 + for q0 >= bits.two32 || q0 * yn0 > bits.two32 * rhat + un0 { + q0-- + rhat += yn1 + if rhat >= bits.two32 { + break + } + } + return q1 * bits.two32 + q0, (un21 * bits.two32 + un0 - q0 * y) >> s +} + +// rem_32 returns the remainder of (hi, lo) divided by y. Rem32 panics +// for y == 0 (division by zero) but, unlike Div32, it doesn't panic +// on a quotient overflow. +pub fn rem_32(hi u32, lo u32, y u32) u32 { + return u32(((u64(hi) << 32) | u64(lo)) % u64(y)) +} + +// rem_64 returns the remainder of (hi, lo) divided by y. Rem64 panics +// for y == 0 (division by zero) but, unlike div_64, it doesn't panic +// on a quotient overflow. +pub fn rem_64(hi u64, lo u64, y u64) u64 { + // We scale down hi so that hi < y, then use div_64 to compute the + // rem with the guarantee that it won't panic on quotient overflow. + // Given that + // hi ≡ hi%y (mod y) + // we have + // hi<<64 + lo ≡ (hi%y)<<64 + lo (mod y) + _, rem := div_64(hi % y, lo, y) + return rem +} |