diff options
author | Indrajith K L | 2022-12-03 17:00:20 +0530 |
---|---|---|
committer | Indrajith K L | 2022-12-03 17:00:20 +0530 |
commit | f5c4671bfbad96bf346bd7e9a21fc4317b4959df (patch) | |
tree | 2764fc62da58f2ba8da7ed341643fc359873142f /v_windows/v/old/vlib/math/bits | |
download | cli-tools-windows-f5c4671bfbad96bf346bd7e9a21fc4317b4959df.tar.gz cli-tools-windows-f5c4671bfbad96bf346bd7e9a21fc4317b4959df.tar.bz2 cli-tools-windows-f5c4671bfbad96bf346bd7e9a21fc4317b4959df.zip |
Diffstat (limited to 'v_windows/v/old/vlib/math/bits')
-rw-r--r-- | v_windows/v/old/vlib/math/bits/bits.v | 478 | ||||
-rw-r--r-- | v_windows/v/old/vlib/math/bits/bits_tables.v | 79 | ||||
-rw-r--r-- | v_windows/v/old/vlib/math/bits/bits_test.v | 288 |
3 files changed, 845 insertions, 0 deletions
diff --git a/v_windows/v/old/vlib/math/bits/bits.v b/v_windows/v/old/vlib/math/bits/bits.v new file mode 100644 index 0000000..a3d2220 --- /dev/null +++ b/v_windows/v/old/vlib/math/bits/bits.v @@ -0,0 +1,478 @@ +// Copyright (c) 2019-2021 Alexander Medvednikov. All rights reserved. +// Use of this source code is governed by an MIT license +// that can be found in the LICENSE file. +module bits + +const ( + // See http://supertech.csail.mit.edu/papers/debruijn.pdf + de_bruijn32 = u32(0x077CB531) + de_bruijn32tab = [byte(0), 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8, 31, 27, 13, + 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9] + de_bruijn64 = u64(0x03f79d71b4ca8b09) + de_bruijn64tab = [byte(0), 1, 56, 2, 57, 49, 28, 3, 61, 58, 42, 50, 38, 29, 17, 4, 62, 47, + 59, 36, 45, 43, 51, 22, 53, 39, 33, 30, 24, 18, 12, 5, 63, 55, 48, 27, 60, 41, 37, 16, + 46, 35, 44, 21, 52, 32, 23, 11, 54, 26, 40, 15, 34, 20, 31, 10, 25, 14, 19, 9, 13, 8, 7, + 6, + ] +) + +const ( + m0 = u64(0x5555555555555555) // 01010101 ... + m1 = u64(0x3333333333333333) // 00110011 ... + m2 = u64(0x0f0f0f0f0f0f0f0f) // 00001111 ... + m3 = u64(0x00ff00ff00ff00ff) // etc. + m4 = u64(0x0000ffff0000ffff) +) + +const ( + // save importing math mod just for these + max_u32 = u32(4294967295) + max_u64 = u64(18446744073709551615) +) + +// --- LeadingZeros --- +// leading_zeros_8 returns the number of leading zero bits in x; the result is 8 for x == 0. +pub fn leading_zeros_8(x byte) int { + return 8 - len_8(x) +} + +// leading_zeros_16 returns the number of leading zero bits in x; the result is 16 for x == 0. +pub fn leading_zeros_16(x u16) int { + return 16 - len_16(x) +} + +// leading_zeros_32 returns the number of leading zero bits in x; the result is 32 for x == 0. +pub fn leading_zeros_32(x u32) int { + return 32 - len_32(x) +} + +// leading_zeros_64 returns the number of leading zero bits in x; the result is 64 for x == 0. +pub fn leading_zeros_64(x u64) int { + return 64 - len_64(x) +} + +// --- TrailingZeros --- +// trailing_zeros_8 returns the number of trailing zero bits in x; the result is 8 for x == 0. +pub fn trailing_zeros_8(x byte) int { + return int(ntz_8_tab[x]) +} + +// trailing_zeros_16 returns the number of trailing zero bits in x; the result is 16 for x == 0. +pub fn trailing_zeros_16(x u16) int { + if x == 0 { + return 16 + } + // see comment in trailing_zeros_64 + return int(bits.de_bruijn32tab[u32(x & -x) * bits.de_bruijn32 >> (32 - 5)]) +} + +// trailing_zeros_32 returns the number of trailing zero bits in x; the result is 32 for x == 0. +pub fn trailing_zeros_32(x u32) int { + if x == 0 { + return 32 + } + // see comment in trailing_zeros_64 + return int(bits.de_bruijn32tab[(x & -x) * bits.de_bruijn32 >> (32 - 5)]) +} + +// trailing_zeros_64 returns the number of trailing zero bits in x; the result is 64 for x == 0. +pub fn trailing_zeros_64(x u64) int { + if x == 0 { + return 64 + } + // If popcount is fast, replace code below with return popcount(^x & (x - 1)). + // + // x & -x leaves only the right-most bit set in the word. Let k be the + // index of that bit. Since only a single bit is set, the value is two + // to the power of k. Multiplying by a power of two is equivalent to + // left shifting, in this case by k bits. The de Bruijn (64 bit) constant + // is such that all six bit, consecutive substrings are distinct. + // Therefore, if we have a left shifted version of this constant we can + // find by how many bits it was shifted by looking at which six bit + // substring ended up at the top of the word. + // (Knuth, volume 4, section 7.3.1) + return int(bits.de_bruijn64tab[(x & -x) * bits.de_bruijn64 >> (64 - 6)]) +} + +// --- OnesCount --- +// ones_count_8 returns the number of one bits ("population count") in x. +pub fn ones_count_8(x byte) int { + return int(pop_8_tab[x]) +} + +// ones_count_16 returns the number of one bits ("population count") in x. +pub fn ones_count_16(x u16) int { + return int(pop_8_tab[x >> 8] + pop_8_tab[x & u16(0xff)]) +} + +// ones_count_32 returns the number of one bits ("population count") in x. +pub fn ones_count_32(x u32) int { + return int(pop_8_tab[x >> 24] + pop_8_tab[x >> 16 & 0xff] + pop_8_tab[x >> 8 & 0xff] + + pop_8_tab[x & u32(0xff)]) +} + +// ones_count_64 returns the number of one bits ("population count") in x. +pub fn ones_count_64(x u64) int { + // Implementation: Parallel summing of adjacent bits. + // See "Hacker's Delight", Chap. 5: Counting Bits. + // The following pattern shows the general approach: + // + // x = x>>1&(m0&m) + x&(m0&m) + // x = x>>2&(m1&m) + x&(m1&m) + // x = x>>4&(m2&m) + x&(m2&m) + // x = x>>8&(m3&m) + x&(m3&m) + // x = x>>16&(m4&m) + x&(m4&m) + // x = x>>32&(m5&m) + x&(m5&m) + // return int(x) + // + // Masking (& operations) can be left away when there's no + // danger that a field's sum will carry over into the next + // field: Since the result cannot be > 64, 8 bits is enough + // and we can ignore the masks for the shifts by 8 and up. + // Per "Hacker's Delight", the first line can be simplified + // more, but it saves at best one instruction, so we leave + // it alone for clarity. + mut y := (x >> u64(1) & (bits.m0 & bits.max_u64)) + (x & (bits.m0 & bits.max_u64)) + y = (y >> u64(2) & (bits.m1 & bits.max_u64)) + (y & (bits.m1 & bits.max_u64)) + y = ((y >> 4) + y) & (bits.m2 & bits.max_u64) + y += y >> 8 + y += y >> 16 + y += y >> 32 + return int(y) & ((1 << 7) - 1) +} + +// --- RotateLeft --- +// rotate_left_8 returns the value of x rotated left by (k mod 8) bits. +// To rotate x right by k bits, call rotate_left_8(x, -k). +// +// This function's execution time does not depend on the inputs. +[inline] +pub fn rotate_left_8(x byte, k int) byte { + n := byte(8) + s := byte(k) & (n - byte(1)) + return ((x << s) | (x >> (n - s))) +} + +// rotate_left_16 returns the value of x rotated left by (k mod 16) bits. +// To rotate x right by k bits, call rotate_left_16(x, -k). +// +// This function's execution time does not depend on the inputs. +[inline] +pub fn rotate_left_16(x u16, k int) u16 { + n := u16(16) + s := u16(k) & (n - u16(1)) + return ((x << s) | (x >> (n - s))) +} + +// rotate_left_32 returns the value of x rotated left by (k mod 32) bits. +// To rotate x right by k bits, call rotate_left_32(x, -k). +// +// This function's execution time does not depend on the inputs. +[inline] +pub fn rotate_left_32(x u32, k int) u32 { + n := u32(32) + s := u32(k) & (n - u32(1)) + return ((x << s) | (x >> (n - s))) +} + +// rotate_left_64 returns the value of x rotated left by (k mod 64) bits. +// To rotate x right by k bits, call rotate_left_64(x, -k). +// +// This function's execution time does not depend on the inputs. +[inline] +pub fn rotate_left_64(x u64, k int) u64 { + n := u64(64) + s := u64(k) & (n - u64(1)) + return ((x << s) | (x >> (n - s))) +} + +// --- Reverse --- +// reverse_8 returns the value of x with its bits in reversed order. +[inline] +pub fn reverse_8(x byte) byte { + return rev_8_tab[x] +} + +// reverse_16 returns the value of x with its bits in reversed order. +[inline] +pub fn reverse_16(x u16) u16 { + return u16(rev_8_tab[x >> 8]) | (u16(rev_8_tab[x & u16(0xff)]) << 8) +} + +// reverse_32 returns the value of x with its bits in reversed order. +[inline] +pub fn reverse_32(x u32) u32 { + mut y := ((x >> u32(1) & (bits.m0 & bits.max_u32)) | ((x & (bits.m0 & bits.max_u32)) << 1)) + y = ((y >> u32(2) & (bits.m1 & bits.max_u32)) | ((y & (bits.m1 & bits.max_u32)) << u32(2))) + y = ((y >> u32(4) & (bits.m2 & bits.max_u32)) | ((y & (bits.m2 & bits.max_u32)) << u32(4))) + return reverse_bytes_32(u32(y)) +} + +// reverse_64 returns the value of x with its bits in reversed order. +[inline] +pub fn reverse_64(x u64) u64 { + mut y := ((x >> u64(1) & (bits.m0 & bits.max_u64)) | ((x & (bits.m0 & bits.max_u64)) << 1)) + y = ((y >> u64(2) & (bits.m1 & bits.max_u64)) | ((y & (bits.m1 & bits.max_u64)) << 2)) + y = ((y >> u64(4) & (bits.m2 & bits.max_u64)) | ((y & (bits.m2 & bits.max_u64)) << 4)) + return reverse_bytes_64(y) +} + +// --- ReverseBytes --- +// reverse_bytes_16 returns the value of x with its bytes in reversed order. +// +// This function's execution time does not depend on the inputs. +[inline] +pub fn reverse_bytes_16(x u16) u16 { + return (x >> 8) | (x << 8) +} + +// reverse_bytes_32 returns the value of x with its bytes in reversed order. +// +// This function's execution time does not depend on the inputs. +[inline] +pub fn reverse_bytes_32(x u32) u32 { + y := ((x >> u32(8) & (bits.m3 & bits.max_u32)) | ((x & (bits.m3 & bits.max_u32)) << u32(8))) + return u32((y >> 16) | (y << 16)) +} + +// reverse_bytes_64 returns the value of x with its bytes in reversed order. +// +// This function's execution time does not depend on the inputs. +[inline] +pub fn reverse_bytes_64(x u64) u64 { + mut y := ((x >> u64(8) & (bits.m3 & bits.max_u64)) | ((x & (bits.m3 & bits.max_u64)) << u64(8))) + y = ((y >> u64(16) & (bits.m4 & bits.max_u64)) | ((y & (bits.m4 & bits.max_u64)) << u64(16))) + return (y >> 32) | (y << 32) +} + +// --- Len --- +// len_8 returns the minimum number of bits required to represent x; the result is 0 for x == 0. +pub fn len_8(x byte) int { + return int(len_8_tab[x]) +} + +// len_16 returns the minimum number of bits required to represent x; the result is 0 for x == 0. +pub fn len_16(x u16) int { + mut y := x + mut n := 0 + if y >= 1 << 8 { + y >>= 8 + n = 8 + } + return n + int(len_8_tab[y]) +} + +// len_32 returns the minimum number of bits required to represent x; the result is 0 for x == 0. +pub fn len_32(x u32) int { + mut y := x + mut n := 0 + if y >= (1 << 16) { + y >>= 16 + n = 16 + } + if y >= (1 << 8) { + y >>= 8 + n += 8 + } + return n + int(len_8_tab[y]) +} + +// len_64 returns the minimum number of bits required to represent x; the result is 0 for x == 0. +pub fn len_64(x u64) int { + mut y := x + mut n := 0 + if y >= u64(1) << u64(32) { + y >>= 32 + n = 32 + } + if y >= u64(1) << u64(16) { + y >>= 16 + n += 16 + } + if y >= u64(1) << u64(8) { + y >>= 8 + n += 8 + } + return n + int(len_8_tab[y]) +} + +// --- Add with carry --- +// Add returns the sum with carry of x, y and carry: sum = x + y + carry. +// The carry input must be 0 or 1; otherwise the behavior is undefined. +// The carryOut output is guaranteed to be 0 or 1. +// +// add_32 returns the sum with carry of x, y and carry: sum = x + y + carry. +// The carry input must be 0 or 1; otherwise the behavior is undefined. +// The carryOut output is guaranteed to be 0 or 1. +// +// This function's execution time does not depend on the inputs. +pub fn add_32(x u32, y u32, carry u32) (u32, u32) { + sum64 := u64(x) + u64(y) + u64(carry) + sum := u32(sum64) + carry_out := u32(sum64 >> 32) + return sum, carry_out +} + +// add_64 returns the sum with carry of x, y and carry: sum = x + y + carry. +// The carry input must be 0 or 1; otherwise the behavior is undefined. +// The carryOut output is guaranteed to be 0 or 1. +// +// This function's execution time does not depend on the inputs. +pub fn add_64(x u64, y u64, carry u64) (u64, u64) { + sum := x + y + carry + // The sum will overflow if both top bits are set (x & y) or if one of them + // is (x | y), and a carry from the lower place happened. If such a carry + // happens, the top bit will be 1 + 0 + 1 = 0 (&^ sum). + carry_out := ((x & y) | ((x | y) & ~sum)) >> 63 + return sum, carry_out +} + +// --- Subtract with borrow --- +// Sub returns the difference of x, y and borrow: diff = x - y - borrow. +// The borrow input must be 0 or 1; otherwise the behavior is undefined. +// The borrowOut output is guaranteed to be 0 or 1. +// +// sub_32 returns the difference of x, y and borrow, diff = x - y - borrow. +// The borrow input must be 0 or 1; otherwise the behavior is undefined. +// The borrowOut output is guaranteed to be 0 or 1. +// +// This function's execution time does not depend on the inputs. +pub fn sub_32(x u32, y u32, borrow u32) (u32, u32) { + diff := x - y - borrow + // The difference will underflow if the top bit of x is not set and the top + // bit of y is set (^x & y) or if they are the same (^(x ^ y)) and a borrow + // from the lower place happens. If that borrow happens, the result will be + // 1 - 1 - 1 = 0 - 0 - 1 = 1 (& diff). + borrow_out := ((~x & y) | (~(x ^ y) & diff)) >> 31 + return diff, borrow_out +} + +// sub_64 returns the difference of x, y and borrow: diff = x - y - borrow. +// The borrow input must be 0 or 1; otherwise the behavior is undefined. +// The borrowOut output is guaranteed to be 0 or 1. +// +// This function's execution time does not depend on the inputs. +pub fn sub_64(x u64, y u64, borrow u64) (u64, u64) { + diff := x - y - borrow + // See Sub32 for the bit logic. + borrow_out := ((~x & y) | (~(x ^ y) & diff)) >> 63 + return diff, borrow_out +} + +// --- Full-width multiply --- +const ( + two32 = u64(0x100000000) + mask32 = two32 - 1 + overflow_error = 'Overflow Error' + divide_error = 'Divide Error' +) + +// mul_32 returns the 64-bit product of x and y: (hi, lo) = x * y +// with the product bits' upper half returned in hi and the lower +// half returned in lo. +// +// This function's execution time does not depend on the inputs. +pub fn mul_32(x u32, y u32) (u32, u32) { + tmp := u64(x) * u64(y) + hi := u32(tmp >> 32) + lo := u32(tmp) + return hi, lo +} + +// mul_64 returns the 128-bit product of x and y: (hi, lo) = x * y +// with the product bits' upper half returned in hi and the lower +// half returned in lo. +// +// This function's execution time does not depend on the inputs. +pub fn mul_64(x u64, y u64) (u64, u64) { + x0 := x & bits.mask32 + x1 := x >> 32 + y0 := y & bits.mask32 + y1 := y >> 32 + w0 := x0 * y0 + t := x1 * y0 + (w0 >> 32) + mut w1 := t & bits.mask32 + w2 := t >> 32 + w1 += x0 * y1 + hi := x1 * y1 + w2 + (w1 >> 32) + lo := x * y + return hi, lo +} + +// --- Full-width divide --- +// div_32 returns the quotient and remainder of (hi, lo) divided by y: +// quo = (hi, lo)/y, rem = (hi, lo)%y with the dividend bits' upper +// half in parameter hi and the lower half in parameter lo. +// div_32 panics for y == 0 (division by zero) or y <= hi (quotient overflow). +pub fn div_32(hi u32, lo u32, y u32) (u32, u32) { + if y != 0 && y <= hi { + panic(bits.overflow_error) + } + z := (u64(hi) << 32) | u64(lo) + quo := u32(z / u64(y)) + rem := u32(z % u64(y)) + return quo, rem +} + +// div_64 returns the quotient and remainder of (hi, lo) divided by y: +// quo = (hi, lo)/y, rem = (hi, lo)%y with the dividend bits' upper +// half in parameter hi and the lower half in parameter lo. +// div_64 panics for y == 0 (division by zero) or y <= hi (quotient overflow). +pub fn div_64(hi u64, lo u64, y1 u64) (u64, u64) { + mut y := y1 + if y == 0 { + panic(bits.overflow_error) + } + if y <= hi { + panic(bits.overflow_error) + } + s := u32(leading_zeros_64(y)) + y <<= s + yn1 := y >> 32 + yn0 := y & bits.mask32 + un32 := (hi << s) | (lo >> (64 - s)) + un10 := lo << s + un1 := un10 >> 32 + un0 := un10 & bits.mask32 + mut q1 := un32 / yn1 + mut rhat := un32 - q1 * yn1 + for q1 >= bits.two32 || q1 * yn0 > bits.two32 * rhat + un1 { + q1-- + rhat += yn1 + if rhat >= bits.two32 { + break + } + } + un21 := un32 * bits.two32 + un1 - q1 * y + mut q0 := un21 / yn1 + rhat = un21 - q0 * yn1 + for q0 >= bits.two32 || q0 * yn0 > bits.two32 * rhat + un0 { + q0-- + rhat += yn1 + if rhat >= bits.two32 { + break + } + } + return q1 * bits.two32 + q0, (un21 * bits.two32 + un0 - q0 * y) >> s +} + +// rem_32 returns the remainder of (hi, lo) divided by y. Rem32 panics +// for y == 0 (division by zero) but, unlike Div32, it doesn't panic +// on a quotient overflow. +pub fn rem_32(hi u32, lo u32, y u32) u32 { + return u32(((u64(hi) << 32) | u64(lo)) % u64(y)) +} + +// rem_64 returns the remainder of (hi, lo) divided by y. Rem64 panics +// for y == 0 (division by zero) but, unlike div_64, it doesn't panic +// on a quotient overflow. +pub fn rem_64(hi u64, lo u64, y u64) u64 { + // We scale down hi so that hi < y, then use div_64 to compute the + // rem with the guarantee that it won't panic on quotient overflow. + // Given that + // hi ≡ hi%y (mod y) + // we have + // hi<<64 + lo ≡ (hi%y)<<64 + lo (mod y) + _, rem := div_64(hi % y, lo, y) + return rem +} diff --git a/v_windows/v/old/vlib/math/bits/bits_tables.v b/v_windows/v/old/vlib/math/bits/bits_tables.v new file mode 100644 index 0000000..830e1e8 --- /dev/null +++ b/v_windows/v/old/vlib/math/bits/bits_tables.v @@ -0,0 +1,79 @@ +// Copyright (c) 2019-2021 Alexander Medvednikov. All rights reserved. +// Use of this source code is governed by an MIT license +// that can be found in the LICENSE file. +module bits + +const ( + ntz_8_tab = [byte(0x08), 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, 0x03, 0x00, 0x01, 0x00, + 0x02, 0x00, 0x01, 0x00, 0x04, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, 0x03, 0x00, 0x01, + 0x00, 0x02, 0x00, 0x01, 0x00, 0x05, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, 0x03, 0x00, + 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, 0x04, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, 0x03, + 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, 0x06, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, + 0x03, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, 0x04, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, + 0x00, 0x03, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, 0x05, 0x00, 0x01, 0x00, 0x02, 0x00, + 0x01, 0x00, 0x03, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, 0x04, 0x00, 0x01, 0x00, 0x02, + 0x00, 0x01, 0x00, 0x03, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, 0x07, 0x00, 0x01, 0x00, + 0x02, 0x00, 0x01, 0x00, 0x03, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, 0x04, 0x00, 0x01, + 0x00, 0x02, 0x00, 0x01, 0x00, 0x03, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, 0x05, 0x00, + 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, 0x03, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, 0x04, + 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, 0x03, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, + 0x06, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, 0x03, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, + 0x00, 0x04, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, 0x03, 0x00, 0x01, 0x00, 0x02, 0x00, + 0x01, 0x00, 0x05, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, 0x03, 0x00, 0x01, 0x00, 0x02, + 0x00, 0x01, 0x00, 0x04, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, 0x03, 0x00, 0x01, 0x00, + 0x02, 0x00, 0x01, 0x00] + pop_8_tab = [byte(0x00), 0x01, 0x01, 0x02, 0x01, 0x02, 0x02, 0x03, 0x01, 0x02, 0x02, 0x03, + 0x02, 0x03, 0x03, 0x04, 0x01, 0x02, 0x02, 0x03, 0x02, 0x03, 0x03, 0x04, 0x02, 0x03, 0x03, + 0x04, 0x03, 0x04, 0x04, 0x05, 0x01, 0x02, 0x02, 0x03, 0x02, 0x03, 0x03, 0x04, 0x02, 0x03, + 0x03, 0x04, 0x03, 0x04, 0x04, 0x05, 0x02, 0x03, 0x03, 0x04, 0x03, 0x04, 0x04, 0x05, 0x03, + 0x04, 0x04, 0x05, 0x04, 0x05, 0x05, 0x06, 0x01, 0x02, 0x02, 0x03, 0x02, 0x03, 0x03, 0x04, + 0x02, 0x03, 0x03, 0x04, 0x03, 0x04, 0x04, 0x05, 0x02, 0x03, 0x03, 0x04, 0x03, 0x04, 0x04, + 0x05, 0x03, 0x04, 0x04, 0x05, 0x04, 0x05, 0x05, 0x06, 0x02, 0x03, 0x03, 0x04, 0x03, 0x04, + 0x04, 0x05, 0x03, 0x04, 0x04, 0x05, 0x04, 0x05, 0x05, 0x06, 0x03, 0x04, 0x04, 0x05, 0x04, + 0x05, 0x05, 0x06, 0x04, 0x05, 0x05, 0x06, 0x05, 0x06, 0x06, 0x07, 0x01, 0x02, 0x02, 0x03, + 0x02, 0x03, 0x03, 0x04, 0x02, 0x03, 0x03, 0x04, 0x03, 0x04, 0x04, 0x05, 0x02, 0x03, 0x03, + 0x04, 0x03, 0x04, 0x04, 0x05, 0x03, 0x04, 0x04, 0x05, 0x04, 0x05, 0x05, 0x06, 0x02, 0x03, + 0x03, 0x04, 0x03, 0x04, 0x04, 0x05, 0x03, 0x04, 0x04, 0x05, 0x04, 0x05, 0x05, 0x06, 0x03, + 0x04, 0x04, 0x05, 0x04, 0x05, 0x05, 0x06, 0x04, 0x05, 0x05, 0x06, 0x05, 0x06, 0x06, 0x07, + 0x02, 0x03, 0x03, 0x04, 0x03, 0x04, 0x04, 0x05, 0x03, 0x04, 0x04, 0x05, 0x04, 0x05, 0x05, + 0x06, 0x03, 0x04, 0x04, 0x05, 0x04, 0x05, 0x05, 0x06, 0x04, 0x05, 0x05, 0x06, 0x05, 0x06, + 0x06, 0x07, 0x03, 0x04, 0x04, 0x05, 0x04, 0x05, 0x05, 0x06, 0x04, 0x05, 0x05, 0x06, 0x05, + 0x06, 0x06, 0x07, 0x04, 0x05, 0x05, 0x06, 0x05, 0x06, 0x06, 0x07, 0x05, 0x06, 0x06, 0x07, + 0x06, 0x07, 0x07, 0x08] + rev_8_tab = [byte(0x00), 0x80, 0x40, 0xc0, 0x20, 0xa0, 0x60, 0xe0, 0x10, 0x90, 0x50, 0xd0, + 0x30, 0xb0, 0x70, 0xf0, 0x08, 0x88, 0x48, 0xc8, 0x28, 0xa8, 0x68, 0xe8, 0x18, 0x98, 0x58, + 0xd8, 0x38, 0xb8, 0x78, 0xf8, 0x04, 0x84, 0x44, 0xc4, 0x24, 0xa4, 0x64, 0xe4, 0x14, 0x94, + 0x54, 0xd4, 0x34, 0xb4, 0x74, 0xf4, 0x0c, 0x8c, 0x4c, 0xcc, 0x2c, 0xac, 0x6c, 0xec, 0x1c, + 0x9c, 0x5c, 0xdc, 0x3c, 0xbc, 0x7c, 0xfc, 0x02, 0x82, 0x42, 0xc2, 0x22, 0xa2, 0x62, 0xe2, + 0x12, 0x92, 0x52, 0xd2, 0x32, 0xb2, 0x72, 0xf2, 0x0a, 0x8a, 0x4a, 0xca, 0x2a, 0xaa, 0x6a, + 0xea, 0x1a, 0x9a, 0x5a, 0xda, 0x3a, 0xba, 0x7a, 0xfa, 0x06, 0x86, 0x46, 0xc6, 0x26, 0xa6, + 0x66, 0xe6, 0x16, 0x96, 0x56, 0xd6, 0x36, 0xb6, 0x76, 0xf6, 0x0e, 0x8e, 0x4e, 0xce, 0x2e, + 0xae, 0x6e, 0xee, 0x1e, 0x9e, 0x5e, 0xde, 0x3e, 0xbe, 0x7e, 0xfe, 0x01, 0x81, 0x41, 0xc1, + 0x21, 0xa1, 0x61, 0xe1, 0x11, 0x91, 0x51, 0xd1, 0x31, 0xb1, 0x71, 0xf1, 0x09, 0x89, 0x49, + 0xc9, 0x29, 0xa9, 0x69, 0xe9, 0x19, 0x99, 0x59, 0xd9, 0x39, 0xb9, 0x79, 0xf9, 0x05, 0x85, + 0x45, 0xc5, 0x25, 0xa5, 0x65, 0xe5, 0x15, 0x95, 0x55, 0xd5, 0x35, 0xb5, 0x75, 0xf5, 0x0d, + 0x8d, 0x4d, 0xcd, 0x2d, 0xad, 0x6d, 0xed, 0x1d, 0x9d, 0x5d, 0xdd, 0x3d, 0xbd, 0x7d, 0xfd, + 0x03, 0x83, 0x43, 0xc3, 0x23, 0xa3, 0x63, 0xe3, 0x13, 0x93, 0x53, 0xd3, 0x33, 0xb3, 0x73, + 0xf3, 0x0b, 0x8b, 0x4b, 0xcb, 0x2b, 0xab, 0x6b, 0xeb, 0x1b, 0x9b, 0x5b, 0xdb, 0x3b, 0xbb, + 0x7b, 0xfb, 0x07, 0x87, 0x47, 0xc7, 0x27, 0xa7, 0x67, 0xe7, 0x17, 0x97, 0x57, 0xd7, 0x37, + 0xb7, 0x77, 0xf7, 0x0f, 0x8f, 0x4f, 0xcf, 0x2f, 0xaf, 0x6f, 0xef, 0x1f, 0x9f, 0x5f, 0xdf, + 0x3f, 0xbf, 0x7f, 0xff] + len_8_tab = [byte(0x00), 0x01, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x04, 0x04, 0x04, 0x04, + 0x04, 0x04, 0x04, 0x04, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, + 0x05, 0x05, 0x05, 0x05, 0x05, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, + 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, + 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, + 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, + 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, + 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, + 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x08, 0x08, 0x08, 0x08, + 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, + 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, + 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, + 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, + 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, + 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, + 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, + 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, + 0x08, 0x08, 0x08, 0x08] +) diff --git a/v_windows/v/old/vlib/math/bits/bits_test.v b/v_windows/v/old/vlib/math/bits/bits_test.v new file mode 100644 index 0000000..23a01b3 --- /dev/null +++ b/v_windows/v/old/vlib/math/bits/bits_test.v @@ -0,0 +1,288 @@ +// +// test suite for bits and bits math functions +// +module bits + +fn test_bits() { + mut i := 0 + mut i1 := u64(0) + + // + // --- LeadingZeros --- + // + + // 8 bit + i = 1 + for x in 0 .. 8 { + // C.printf("x:%02x lz: %d cmp: %d\n", i << x, leading_zeros_8(i << x), 7-x) + assert leading_zeros_8(byte(i << x)) == 7 - x + } + + // 16 bit + i = 1 + for x in 0 .. 16 { + // C.printf("x:%04x lz: %d cmp: %d\n", u16(i) << x, leading_zeros_16(u16(i) << x), 15-x) + assert leading_zeros_16(u16(i) << x) == 15 - x + } + + // 32 bit + i = 1 + for x in 0 .. 32 { + // C.printf("x:%08x lz: %d cmp: %d\n", u32(i) << x, leading_zeros_32(u32(i) << x), 31-x) + assert leading_zeros_32(u32(i) << x) == 31 - x + } + + // 64 bit + i = 1 + for x in 0 .. 64 { + // C.printf("x:%016llx lz: %llu cmp: %d\n", u64(i) << x, leading_zeros_64(u64(i) << x), 63-x) + assert leading_zeros_64(u64(i) << x) == 63 - x + } + + // + // --- ones_count --- + // + + // 8 bit + i = 0 + for x in 0 .. 9 { + // C.printf("x:%02x lz: %llu cmp: %d\n", byte(i), ones_count_8(byte(i)), x) + assert ones_count_8(byte(i)) == x + i = (i << 1) + 1 + } + + // 16 bit + i = 0 + for x in 0 .. 17 { + // C.printf("x:%04x lz: %llu cmp: %d\n", u16(i), ones_count_16(u16(i)), x) + assert ones_count_16(u16(i)) == x + i = (i << 1) + 1 + } + + // 32 bit + i = 0 + for x in 0 .. 33 { + // C.printf("x:%08x lz: %llu cmp: %d\n", u32(i), ones_count_32(u32(i)), x) + assert ones_count_32(u32(i)) == x + i = (i << 1) + 1 + } + + // 64 bit + i1 = 0 + for x in 0 .. 65 { + // C.printf("x:%016llx lz: %llu cmp: %d\n", u64(i1), ones_count_64(u64(i1)), x) + assert ones_count_64(i1) == x + i1 = (i1 << 1) + 1 + } + + // + // --- rotate_left/right --- + // + assert rotate_left_8(0x12, 4) == 0x21 + assert rotate_left_16(0x1234, 8) == 0x3412 + assert rotate_left_32(0x12345678, 16) == 0x56781234 + assert rotate_left_64(0x1234567887654321, 32) == 0x8765432112345678 + + // + // --- reverse --- + // + + // 8 bit + i = 0 + for _ in 0 .. 9 { + mut rv := byte(0) + mut bc := 0 + mut n := i + for bc < 8 { + rv = (rv << 1) | (byte(n) & 0x01) + bc++ + n = n >> 1 + } + // C.printf("x:%02x lz: %llu cmp: %d\n", byte(i), reverse_8(byte(i)), rv) + assert reverse_8(byte(i)) == rv + i = (i << 1) + 1 + } + + // 16 bit + i = 0 + for _ in 0 .. 17 { + mut rv := u16(0) + mut bc := 0 + mut n := i + for bc < 16 { + rv = (rv << 1) | (u16(n) & 0x01) + bc++ + n = n >> 1 + } + // C.printf("x:%04x lz: %llu cmp: %d\n", u16(i), reverse_16(u16(i)), rv) + assert reverse_16(u16(i)) == rv + i = (i << 1) + 1 + } + + // 32 bit + i = 0 + for _ in 0 .. 33 { + mut rv := u32(0) + mut bc := 0 + mut n := i + for bc < 32 { + rv = (rv << 1) | (u32(n) & 0x01) + bc++ + n = n >> 1 + } + // C.printf("x:%08x lz: %llu cmp: %d\n", u32(i), reverse_32(u32(i)), rv) + assert reverse_32(u32(i)) == rv + i = (i << 1) + 1 + } + + // 64 bit + i1 = 0 + for _ in 0 .. 64 { + mut rv := u64(0) + mut bc := 0 + mut n := i1 + for bc < 64 { + rv = (rv << 1) | (n & 0x01) + bc++ + n = n >> 1 + } + // C.printf("x:%016llx lz: %016llx cmp: %016llx\n", u64(i1), reverse_64(u64(i1)), rv) + assert reverse_64(i1) == rv + i1 = (i1 << 1) + 1 + } + + // + // --- add --- + // + + // 32 bit + i = 1 + for x in 0 .. 32 { + v := u32(i) << x + sum, carry := add_32(v, v, u32(0)) + // C.printf("x:%08x [%llu,%llu] %llu\n", u32(i) << x, sum, carry, u64(v) + u64(v)) + assert ((u64(carry) << 32) | u64(sum)) == u64(v) + u64(v) + } + mut sum_32t, mut carry_32t := add_32(0x8000_0000, 0x8000_0000, u32(0)) + assert sum_32t == u32(0) + assert carry_32t == u32(1) + + sum_32t, carry_32t = add_32(0xFFFF_FFFF, 0xFFFF_FFFF, u32(1)) + assert sum_32t == 0xFFFF_FFFF + assert carry_32t == u32(1) + + // 64 bit + i = 1 + for x in 0 .. 63 { + v := u64(i) << x + sum, carry := add_64(v, v, u64(0)) + // C.printf("x:%16x [%llu,%llu] %llu\n", u64(i) << x, sum, carry, u64(v >> 32) + u64(v >> 32)) + assert ((carry << 32) | sum) == v + v + } + mut sum_64t, mut carry_64t := add_64(0x8000_0000_0000_0000, 0x8000_0000_0000_0000, + u64(0)) + assert sum_64t == u64(0) + assert carry_64t == u64(1) + + sum_64t, carry_64t = add_64(0xFFFF_FFFF_FFFF_FFFF, 0xFFFF_FFFF_FFFF_FFFF, u64(1)) + assert sum_64t == 0xFFFF_FFFF_FFFF_FFFF + assert carry_64t == u64(1) + + // + // --- sub --- + // + + // 32 bit + i = 1 + for x in 1 .. 32 { + v0 := u32(i) << x + v1 := v0 >> 1 + mut diff, mut borrow_out := sub_32(v0, v1, u32(0)) + // C.printf("x:%08x [%llu,%llu] %08x\n", u32(i) << x, diff, borrow_out, v0 - v1) + assert diff == v1 + + diff, borrow_out = sub_32(v0, v1, u32(1)) + // C.printf("x:%08x [%llu,%llu] %08x\n", u32(i) << x, diff, borrow_out, v0 - v1) + assert diff == (v1 - 1) + assert borrow_out == u32(0) + + diff, borrow_out = sub_32(v1, v0, u32(1)) + // C.printf("x:%08x [%llu,%llu] %08x\n", u32(i) << x, diff, borrow_out, v1 - v0) + assert borrow_out == u32(1) + } + + // 64 bit + i = 1 + for x in 1 .. 64 { + v0 := u64(i) << x + v1 := v0 >> 1 + mut diff, mut borrow_out := sub_64(v0, v1, u64(0)) + // C.printf("x:%08x [%llu,%llu] %08x\n", u64(i) << x, diff, borrow_out, v0 - v1) + assert diff == v1 + + diff, borrow_out = sub_64(v0, v1, u64(1)) + // C.printf("x:%08x [%llu,%llu] %08x\n", u64(i) << x, diff, borrow_out, v0 - v1) + assert diff == (v1 - 1) + assert borrow_out == u64(0) + + diff, borrow_out = sub_64(v1, v0, u64(1)) + // C.printf("x:%08x [%llu,%llu] %08x\n",u64(i) << x, diff, borrow_out, v1 - v0) + assert borrow_out == u64(1) + } + + // + // --- mul --- + // + + // 32 bit + i = 1 + for x in 0 .. 32 { + v0 := u32(i) << x + v1 := v0 - 1 + hi, lo := mul_32(v0, v1) + assert (u64(hi) << 32) | (u64(lo)) == u64(v0) * u64(v1) + } + + // 64 bit + i = 1 + for x in 0 .. 64 { + v0 := u64(i) << x + v1 := v0 - 1 + hi, lo := mul_64(v0, v1) + // C.printf("v0: %llu v1: %llu [%llu,%llu] tt: %llu\n", v0, v1, hi, lo, (v0 >> 32) * (v1 >> 32)) + assert (hi & 0xFFFF_FFFF_0000_0000) == (((v0 >> 32) * (v1 >> 32)) & 0xFFFF_FFFF_0000_0000) + assert (lo & 0x0000_0000_FFFF_FFFF) == (((v0 & 0x0000_0000_FFFF_FFFF) * (v1 & 0x0000_0000_FFFF_FFFF)) & 0x0000_0000_FFFF_FFFF) + } + + // + // --- div --- + // + + // 32 bit + i = 1 + for x in 0 .. 31 { + hi := u32(i) << x + lo := hi - 1 + y := u32(3) << x + quo, rem := div_32(hi, lo, y) + // C.printf("[%08x_%08x] %08x (%08x,%08x)\n", hi, lo, y, quo, rem) + tst := ((u64(hi) << 32) | u64(lo)) + assert quo == (tst / u64(y)) + assert rem == (tst % u64(y)) + assert rem == rem_32(hi, lo, y) + } + + // 64 bit + i = 1 + for x in 0 .. 62 { + hi := u64(i) << x + lo := u64(2) // hi - 1 + y := u64(0x4000_0000_0000_0000) + quo, rem := div_64(hi, lo, y) + // C.printf("[%016llx_%016llx] %016llx (%016llx,%016llx)\n", hi, lo, y, quo, rem) + assert quo == u64(2) << (x + 1) + _, rem1 := div_64(hi % y, lo, y) + assert rem == rem1 + assert rem == rem_64(hi, lo, y) + } +} |