aboutsummaryrefslogtreecommitdiff
path: root/v_windows/v/vlib/math/factorial.v
diff options
context:
space:
mode:
authorIndrajith K L2022-12-03 17:00:20 +0530
committerIndrajith K L2022-12-03 17:00:20 +0530
commitf5c4671bfbad96bf346bd7e9a21fc4317b4959df (patch)
tree2764fc62da58f2ba8da7ed341643fc359873142f /v_windows/v/vlib/math/factorial.v
downloadcli-tools-windows-f5c4671bfbad96bf346bd7e9a21fc4317b4959df.tar.gz
cli-tools-windows-f5c4671bfbad96bf346bd7e9a21fc4317b4959df.tar.bz2
cli-tools-windows-f5c4671bfbad96bf346bd7e9a21fc4317b4959df.zip
Adds most of the toolsHEADmaster
Diffstat (limited to 'v_windows/v/vlib/math/factorial.v')
-rw-r--r--v_windows/v/vlib/math/factorial.v55
1 files changed, 55 insertions, 0 deletions
diff --git a/v_windows/v/vlib/math/factorial.v b/v_windows/v/vlib/math/factorial.v
new file mode 100644
index 0000000..116e083
--- /dev/null
+++ b/v_windows/v/vlib/math/factorial.v
@@ -0,0 +1,55 @@
+module math
+
+// factorial calculates the factorial of the provided value.
+pub fn factorial(n f64) f64 {
+ // For a large postive argument (n >= factorials_table.len) return max_f64
+ if n >= factorials_table.len {
+ return max_f64
+ }
+ // Otherwise return n!.
+ if n == f64(i64(n)) && n >= 0.0 {
+ return factorials_table[i64(n)]
+ }
+ return gamma(n + 1.0)
+}
+
+// log_factorial calculates the log-factorial of the provided value.
+pub fn log_factorial(n f64) f64 {
+ // For a large postive argument (n < 0) return max_f64
+ if n < 0 {
+ return -max_f64
+ }
+ // If n < N then return ln(n!).
+ if n != f64(i64(n)) {
+ return log_gamma(n + 1)
+ } else if n < log_factorials_table.len {
+ return log_factorials_table[i64(n)]
+ }
+ // Otherwise return asymptotic expansion of ln(n!).
+ return log_factorial_asymptotic_expansion(int(n))
+}
+
+fn log_factorial_asymptotic_expansion(n int) f64 {
+ m := 6
+ mut term := []f64{}
+ xx := f64((n + 1) * (n + 1))
+ mut xj := f64(n + 1)
+ log_factorial := log_sqrt_2pi - xj + (xj - 0.5) * log(xj)
+ mut i := 0
+ for i = 0; i < m; i++ {
+ term << bernoulli[i] / xj
+ xj *= xx
+ }
+ mut sum := term[m - 1]
+ for i = m - 2; i >= 0; i-- {
+ if abs(sum) <= abs(term[i]) {
+ break
+ }
+ sum = term[i]
+ }
+ for i >= 0 {
+ sum += term[i]
+ i--
+ }
+ return log_factorial + sum
+}